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Trees

➢A tree is a connected undirected graph with no simple circuits.

➢Because a tree cannot have a simple circuit, a tree cannot contain 
multiple edges or loops. Therefore, any tree must be a simple graph.

➢In the given figure, G1 and G2 are tree, where as G3 and G4 are not 
trees.
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Terminology
• Node: It represents a termination point in a tree.
• Root: A tree’s topmost node.
• Parent: Each node (apart from the root) in a tree that has at least one sub-

node of its own is called a parent node.
• Child: A node that straightway came from a parent node when moving 

away from the root is the child node.
• Leaf Node: These are external nodes. They are the nodes that have no 

child.
• Internal Node: As the name suggests, these are inner nodes with at least 

one child.
• Depth of a Tree: The number of edges from the tree’s node to the root is.
• Height of a Tree: It is the number of edges from the node to the deepest 

leaf. The tree height is also considered the root height.
• Siblings: In a tree data structure, nodes which belong to same Parent are 

called as SIBLINGS.
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Vertices and Edges
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A B

CD

A, B,D,C are  vertices 
A to B, A to D, B to C, C to D are edges



Rooted Trees
A rooted tree is a graph that has a single node as the starting point. All of the other 

nodes in the tree are connected to the root either directly or indirectly.
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Rooted Trees
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M-array Tree

An m-array tree can be described as a generalization of a binary tree in 
which each and every node has M or less children.

A tree will be known as the m array tree if each node of the tree does 
not contain more than m children.

we can see an example of M-ary tree where M = 3.

The given tree will be known as the full M-ary tree if every node of the 
M-ary tree must contain either 0 or M children.
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Cont..
The tree will be known as the perfect tree if every leaf node of this tree 
is at the same depth.

If there is a full m ary tree, which has i internal vertices, then we can 
calculate the vertices and leaves of that tree with the help of following 
formula:

1.Vertices n = mi + 1

2.Leaves I = (m-1)i + 1
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Properties of Trees
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Binary Tree
A binary tree is a tree-type non-linear data structure with a maximum 
of two children for each parent.

Every node in a binary tree has a left and right reference along with the 
data element.

The node at the top of the hierarchy of a tree is called the root node.

The nodes that hold other sub-nodes are the parent nodes.
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Properties
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BST
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Form a binary search tree for the words mathematics, physics, 
geography, zoology, meteorology,geology, psychology, and chemistry 
(using alphabetical order).
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Questions:
1. Build a binary search tree for the word banana, peach, apple, pear, 

coconut, mango, and papaya using alphabetical order.

2. Build a binary search tree for the word oenology, phrenology, 
campanology, ornithology, ichthyology, limnology, alchemy, and 
astrology using alphabetical order.

3. Using alphabetical order, construct a binary search tree for the words 
in the sentence “The quick brown fox jumps over the lazy dog.”
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Tree Traversal
Procedures for systematically visiting every vertex of an ordered rooted 
tree are called traversal algorithms.

We will describe three of the most commonly used such algorithms, 
preorder traversal, inorder traversal, and postorder traversal.
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Tree Traversal
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Preorder Traversal

Preorder traversal: 1245367
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Preorder Traversal ?



Postorder Traversal

Postorder traversal:4526731
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Postorder Traversal ?



Inorder Traversal

Inorder traversal: 4251637

Chapter 6,Trees

1

54 6 7

2 3

Inorder Traversal ?



Infix, Prefix, and Postfix Notation
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Tree Traversal Algorithm

BFS (Breadth First Search)
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➢Expand shallowest unexpanded node.

➢Fringe: node waiting in a queue to be explored.

➢Fringe is a FIFO queue, i.e., new successors got at the end of the 
queue.



BFS : Example 1 
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BFS Solution: 1,2,4,5,7,3,6



BFS : Example 2

5/23/2024 Unit-3, Informed and Uninformed Search 23

1

54 6 7

2 3

BFS Solution: 1,2,3,4,5,6,7

Solution ?



Depth-first search
➢Depth-first search always expands one of the nodes at the deepest 

level of the tree.

➢Only when the search hits a dead end (a non-goal node with no 
expansion) does the search go back and expand nodes at shallower 
levels.

➢For a state space with branching factor b and maximum depth m 
depth-first search requires storage of only (bm) nodes, in contrast to 
the (bd) that would be required by breadth-first search in the case 
where the shallowest goal is at depth d.

➢Expand deepest unexpanded note. Fringe is implemented as LIFO. 
(=stack)
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Example:1
• DFS Traversal ?
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Solution

DFS Solution is: 1,2,4,5,3,6,7 (like preorder traversal)
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Perform the BFS and DFS Traversal in 
following Graph.
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Minimum Spanning Trees
➢A Minimum Spanning Tree (MST) is a fundamental concept in graph 

theory and optimization. It's used to find the smallest set of edges in a 
connected, undirected graph that connects all the vertices without 
forming any cycles. The goal is to minimize the total weight or cost of 
the tree.

➢A minimum spanning tree is not necessarily unique. All the weights of 
the edges in the MST must be distinct.

➢The edges of the minimum spanning tree can be found using the 
greedy algorithm or the more sophisticated Kruskal or Prim's 
algorithm.

➢A minimum spanning tree has precisely n-1 edges, where n is the 
number of vertices in the graph.
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Prism Algorithm
Prim's Algorithm is a greedy algorithm that is used to find the 
minimum spanning tree from a graph.

Prim's algorithm finds the subset of edges that includes every vertex of 
the graph such that the sum of the weights of the edges can be 
minimized.

Prim's algorithm starts with the single node and explores all the 
adjacent nodes with all the connecting edges at every step.
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Prism Algorithm
Prim's algorithm is a greedy algorithm that starts from one vertex and 
continue to add the edges with the smallest weight until the goal is 
reached. The steps to implement the prim's algorithm are given as 
follows –

➢First, we have to initialize an MST with the randomly chosen vertex.

➢Now, we have to find all the edges that connect the tree in the above 
step with the new vertices. From the edges found, select the 
minimum edge and add it to the tree.

➢Repeat step 2 until the minimum spanning tree is formed.
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Example of prim's algorithm
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Prism Algorithm
Step 1: we have to choose a vertex from a graph, lets choose B.

Step 2: We have to list out edge from vertex B, and add the shortest 
edge from vertex B.

Two edges from Vertex B, ie.

 B to C  with path cost 10

B to D with path cost 4.

Select the minimal, i.e B to D.

Step 3: . In this case, the edges DE and CD are such edges. Add them to 
MST and explore the adjacent of C, i.e., E and A. So, select the edge DE 
and add it to the MST.
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Prism Algorithm
Step 4: Now, select the edge CD, and add it to the MST.

Step 5: Now, choose the edge CA. Here, we cannot select the edge CE 
as it would create a cycle to the graph. So, choose the edge CA and add 
it to the MST.

So, the graph produced in step 5 is the minimum spanning tree of the 
given graph. The cost of the MST is given below –

Cost of MST = 4 + 2 + 1 + 3 = 10 units.
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Kruskal Algorithm
Step 1: Sort all edges in increasing order of their edge weights.

Step 2: Pick the smallest edge.

Step 3: Check if the new edge creates a cycle or loop in a 
spanning tree.

Step 4: If it doesn’t form the cycle, then include that edge in MST. 
Otherwise, discard it.

Step 5: Repeat from step 2 until it includes |V| - 1 edges in MST.
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Kruskal Algorithm

The graph G(V, E) given below 
contains 6 vertices and 12 edges. 
And you will create a minimum 
spanning tree T(V’, E’) for G(V, E) 
such that the number of vertices 
in T will be 6 and edges will be 5 
(6-1).
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Kruskal Algorithm
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Kruskal Algorithm
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Source Vertex Destination Vertex Edge Weight

E F 2

F D 2

B C 3

C F 3

C D 4

B F 5

B D 6

A B 7

A C 8

Arranging all edges in a sorted list by their edge weights.



After this step, you will include edges in the MST such that the 
included edge would not form a cycle in your tree structure.
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