
Discrete
Structure

Chapter:6

Trees

Prepared by :

Kul Prasad Paudel

Note: This slides is only for theory
containing definition and theorem. More
numerical will be practice in classes

Trees

➢A tree is a connected undirected graph with no simple circuits.

➢Because a tree cannot have a simple circuit, a tree cannot contain
multiple edges or loops. Therefore, any tree must be a simple graph.

➢In the given figure, G1 and G2 are tree, where as G3 and G4 are not
trees.

Chapter 6,Trees

Terminology
• Node: It represents a termination point in a tree.
• Root: A tree’s topmost node.
• Parent: Each node (apart from the root) in a tree that has at least one sub-

node of its own is called a parent node.
• Child: A node that straightway came from a parent node when moving

away from the root is the child node.
• Leaf Node: These are external nodes. They are the nodes that have no

child.
• Internal Node: As the name suggests, these are inner nodes with at least

one child.
• Depth of a Tree: The number of edges from the tree’s node to the root is.
• Height of a Tree: It is the number of edges from the node to the deepest

leaf. The tree height is also considered the root height.
• Siblings: In a tree data structure, nodes which belong to same Parent are

called as SIBLINGS.

Chapter 6,Trees

Vertices and Edges

Chapter 6,Trees

A B

CD

A, B,D,C are vertices
A to B, A to D, B to C, C to D are edges

Rooted Trees
A rooted tree is a graph that has a single node as the starting point. All of the other

nodes in the tree are connected to the root either directly or indirectly.

Chapter 6,Trees

Root

Edges

Node

Rooted Trees

Chapter 6,Trees

M-array Tree

An m-array tree can be described as a generalization of a binary tree in
which each and every node has M or less children.

A tree will be known as the m array tree if each node of the tree does
not contain more than m children.

we can see an example of M-ary tree where M = 3.

The given tree will be known as the full M-ary tree if every node of the
M-ary tree must contain either 0 or M children.

Chapter 6,Trees

Cont..
The tree will be known as the perfect tree if every leaf node of this tree
is at the same depth.

If there is a full m ary tree, which has i internal vertices, then we can
calculate the vertices and leaves of that tree with the help of following
formula:

1.Vertices n = mi + 1

2.Leaves I = (m-1)i + 1

Chapter 6,Trees

Properties of Trees

Chapter 6,Trees

Binary Tree
A binary tree is a tree-type non-linear data structure with a maximum
of two children for each parent.

Every node in a binary tree has a left and right reference along with the
data element.

The node at the top of the hierarchy of a tree is called the root node.

The nodes that hold other sub-nodes are the parent nodes.

Chapter 6,Trees

Properties

Chapter 6,Trees

BST

Chapter 6,Trees

Form a binary search tree for the words mathematics, physics,
geography, zoology, meteorology,geology, psychology, and chemistry
(using alphabetical order).

Chapter 6,Trees

Questions:
1. Build a binary search tree for the word banana, peach, apple, pear,

coconut, mango, and papaya using alphabetical order.

2. Build a binary search tree for the word oenology, phrenology,
campanology, ornithology, ichthyology, limnology, alchemy, and
astrology using alphabetical order.

3. Using alphabetical order, construct a binary search tree for the words
in the sentence “The quick brown fox jumps over the lazy dog.”

Chapter 6,Trees

Tree Traversal
Procedures for systematically visiting every vertex of an ordered rooted
tree are called traversal algorithms.

We will describe three of the most commonly used such algorithms,
preorder traversal, inorder traversal, and postorder traversal.

Chapter 6,Trees

Tree Traversal

Chapter 6,Trees

Preorder Traversal

Preorder traversal: 1245367

Chapter 6,Trees

1

54 6 7

2 3

Preorder Traversal ?

Postorder Traversal

Postorder traversal:4526731

Chapter 6,Trees

1

54 6 7

2 3

Postorder Traversal ?

Inorder Traversal

Inorder traversal: 4251637

Chapter 6,Trees

1

54 6 7

2 3

Inorder Traversal ?

Infix, Prefix, and Postfix Notation

Chapter 6,Trees

Tree Traversal Algorithm

BFS (Breadth First Search)

Chapter 6,Trees

➢Expand shallowest unexpanded node.

➢Fringe: node waiting in a queue to be explored.

➢Fringe is a FIFO queue, i.e., new successors got at the end of the
queue.

BFS : Example 1

5/23/2024 Unit-3, Informed and Uninformed Search 22

1

54 6 7

2 3

BFS Solution: 1,2,4,5,7,3,6

BFS : Example 2

5/23/2024 Unit-3, Informed and Uninformed Search 23

1

54 6 7

2 3

BFS Solution: 1,2,3,4,5,6,7

Solution ?

Depth-first search
➢Depth-first search always expands one of the nodes at the deepest

level of the tree.

➢Only when the search hits a dead end (a non-goal node with no
expansion) does the search go back and expand nodes at shallower
levels.

➢For a state space with branching factor b and maximum depth m
depth-first search requires storage of only (bm) nodes, in contrast to
the (bd) that would be required by breadth-first search in the case
where the shallowest goal is at depth d.

➢Expand deepest unexpanded note. Fringe is implemented as LIFO.
(=stack)

5/23/2024 Unit-3, Informed and Uninformed Search 24

Example:1
• DFS Traversal ?

5/23/2024 Unit-3, Informed and Uninformed Search 25

1

54 6 7

2 3

Solution

DFS Solution is: 1,2,4,5,3,6,7 (like preorder traversal)

5/23/2024 Unit-3, Informed and Uninformed Search 26

1

54 6 7

2 3

Perform the BFS and DFS Traversal in
following Graph.

C
h

ap
te

r 6
,Tree

s

Minimum Spanning Trees
➢A Minimum Spanning Tree (MST) is a fundamental concept in graph

theory and optimization. It's used to find the smallest set of edges in a
connected, undirected graph that connects all the vertices without
forming any cycles. The goal is to minimize the total weight or cost of
the tree.

➢A minimum spanning tree is not necessarily unique. All the weights of
the edges in the MST must be distinct.

➢The edges of the minimum spanning tree can be found using the
greedy algorithm or the more sophisticated Kruskal or Prim's
algorithm.

➢A minimum spanning tree has precisely n-1 edges, where n is the
number of vertices in the graph.

Chapter 6,Trees

Prism Algorithm
Prim's Algorithm is a greedy algorithm that is used to find the
minimum spanning tree from a graph.

Prim's algorithm finds the subset of edges that includes every vertex of
the graph such that the sum of the weights of the edges can be
minimized.

Prim's algorithm starts with the single node and explores all the
adjacent nodes with all the connecting edges at every step.

Chapter 6,Trees

Prism Algorithm
Prim's algorithm is a greedy algorithm that starts from one vertex and
continue to add the edges with the smallest weight until the goal is
reached. The steps to implement the prim's algorithm are given as
follows –

➢First, we have to initialize an MST with the randomly chosen vertex.

➢Now, we have to find all the edges that connect the tree in the above
step with the new vertices. From the edges found, select the
minimum edge and add it to the tree.

➢Repeat step 2 until the minimum spanning tree is formed.

Chapter 6,Trees

Example of prim's algorithm

Chapter 6,Trees

Prism Algorithm
Step 1: we have to choose a vertex from a graph, lets choose B.

Step 2: We have to list out edge from vertex B, and add the shortest
edge from vertex B.

Two edges from Vertex B, ie.

 B to C with path cost 10

B to D with path cost 4.

Select the minimal, i.e B to D.

Step 3: . In this case, the edges DE and CD are such edges. Add them to
MST and explore the adjacent of C, i.e., E and A. So, select the edge DE
and add it to the MST.

Chapter 6,Trees

Prism Algorithm
Step 4: Now, select the edge CD, and add it to the MST.

Step 5: Now, choose the edge CA. Here, we cannot select the edge CE
as it would create a cycle to the graph. So, choose the edge CA and add
it to the MST.

So, the graph produced in step 5 is the minimum spanning tree of the
given graph. The cost of the MST is given below –

Cost of MST = 4 + 2 + 1 + 3 = 10 units.

Chapter 6,Trees

Kruskal Algorithm
Step 1: Sort all edges in increasing order of their edge weights.

Step 2: Pick the smallest edge.

Step 3: Check if the new edge creates a cycle or loop in a
spanning tree.

Step 4: If it doesn’t form the cycle, then include that edge in MST.
Otherwise, discard it.

Step 5: Repeat from step 2 until it includes |V| - 1 edges in MST.

Chapter 6,Trees

Kruskal Algorithm

The graph G(V, E) given below
contains 6 vertices and 12 edges.
And you will create a minimum
spanning tree T(V’, E’) for G(V, E)
such that the number of vertices
in T will be 6 and edges will be 5
(6-1).

Chapter 6,Trees

Kruskal Algorithm

Chapter 6,Trees

Kruskal Algorithm

Chapter 6,Trees

Source Vertex Destination Vertex Edge Weight

E F 2

F D 2

B C 3

C F 3

C D 4

B F 5

B D 6

A B 7

A C 8

Arranging all edges in a sorted list by their edge weights.

After this step, you will include edges in the MST such that the
included edge would not form a cycle in your tree structure.

Chapter 6,Trees

	Slide 1: Discrete Structure
	Slide 2: Trees
	Slide 3: Terminology
	Slide 4: Vertices and Edges
	Slide 5: Rooted Trees A rooted tree is a graph that has a single node as the starting point. All of the other nodes in the tree are connected to the root either directly or indirectly.
	Slide 6: Rooted Trees
	Slide 7: M-array Tree
	Slide 8: Cont..
	Slide 9: Properties of Trees
	Slide 10: Binary Tree
	Slide 11: Properties
	Slide 12: BST
	Slide 13: Form a binary search tree for the words mathematics, physics, geography, zoology, meteorology,geology, psychology, and chemistry (using alphabetical order).
	Slide 14: Questions:
	Slide 15: Tree Traversal
	Slide 16: Tree Traversal
	Slide 17: Preorder Traversal
	Slide 18: Postorder Traversal
	Slide 19: Inorder Traversal
	Slide 20: Infix, Prefix, and Postfix Notation
	Slide 21: Tree Traversal Algorithm
	Slide 22: BFS : Example 1
	Slide 23: BFS : Example 2
	Slide 24: Depth-first search
	Slide 25: Example:1
	Slide 26: Solution
	Slide 27: Perform the BFS and DFS Traversal in following Graph.
	Slide 28: Minimum Spanning Trees
	Slide 29: Prism Algorithm
	Slide 30: Prism Algorithm
	Slide 31: Example of prim's algorithm
	Slide 32: Prism Algorithm
	Slide 33: Prism Algorithm
	Slide 34: Kruskal Algorithm
	Slide 35: Kruskal Algorithm
	Slide 36: Kruskal Algorithm
	Slide 37: Kruskal Algorithm
	Slide 38: After this step, you will include edges in the MST such that the included edge would not form a cycle in your tree structure.

