
BIM – JAVA – CHAPTER 2.2

(1)
https://www.asheshneupane.com.np https://www.highapproach.com

Chapter 2.2

Operators in Java

An operator, in Java, is a special symbol performing specific operations on one, two or three operands and then

returning a result.

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra. The

following table lists the arithmetic operators. Assume integer variable A holds 10 and variable B holds 20, then

Operator Description Example

+ (Addition) Adds values on either side of the

operator.

A + B will give 30

-(Subtraction) Subtracts right-hand operand from

left- hand operand

A – B will give -10

*(Multiplication) Multiplies values on either side of

the operator.

A * B will give 200

/ (Division) Divides left-hand operand by

right-hand operand.

B / A will give 2

% (Modulus) Divides left-hand operand by

right-hand operand and returns

remainder.

B % A will give 0

++ (Increment) Increases the value of operand by

1.

B++ gives 21

-- (Decrement) Decreases the value of operand by

1.

B—gives 19

Relational Operators

There are following relational operators supported by Java language. Assume variable A holds 10 and variable B

holds 20, then

Operator Description Example
== (equal to) Checks if the values of two

operands are equal or not, if yes

then condition becomes true.

(A == B) is not true.

!= (not equal to) Checks if the values of two

operands are equal or not, if

values are not equal then

condition becomes true.

(A != B) is true.

> (greater than) Checks if the value of left operand

is greater than the value of right

operand, if yes then condition

becomes true.

(A > B) is not true.

< (less than) Checks if the value of left operand

is less than the value of right

operand, if yes then condition

becomes true.

(A < B) is true.

<= (less than or equal to) Checks if the value of left operand

is less than or equal to the value of

right operand, if yes then

condition becomes true.

(A <= B) is true.

BIM – JAVA – CHAPTER 2.2

(2)
https://www.asheshneupane.com.np https://www.highapproach.com

Bitwise Operators

Java defines several bitwise operators, which can be applied to the integer types, long, int,short, char, and byte.

Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60 and b =13; now in binary

format they will be as follows:

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

The following table lists the bitwise operators. Assume integer variable A holds 60 and variable B holds 13 the

Operator Description Example
& (bitwise and) Binary AND Operator copies a bit

to the result if it exists in both

operands.

(A & B) will give 12 which is

0000 1100

| (bitwise or) Binary OR Operator copies a bit if

it exists in either operand.

(A | B) will give 61 which is 0011

1101

^ (bitwise XOR) Binary XOR Operator copies the

bit if it is set in one operand but

not both.

(A ^ B) will give 49 which is 0011

0001

~ (bitwise compliment) Binary Ones Complement

Operator is unary and has the

effect of 'flipping' bits.

(~A) will give -61 which is 1100

0011 in 2's complement form due

to a signed binary number.

<< (left shift) Binary Left Shift Operator. The

left operands value is moved left

by the number of bits specified by

the right operand.

A << 2 will give 240 which is

1111 0000

>> (right shift) Binary Right Shift Operator. The

left operands value is moved right

by the number of bits specified by

the right operand.

A >> 2 will give 15 which is 11

>>> (zero fill rightshift) Shift right zero fill operator. The

left operands value is moved right

by the number of bits specified by

the right operand and shifted

values are filled up with zeros.

A >>>2 will give 15 which is

0000 1111

Logical Operators

The following table lists the logical operators. Assume Boolean Variables A holds true and variable B holds false

then

Operator Description Example
&& (logical and) Called Logical AND operator. If

both the operands are non-zero,

then the condition becomes true

(A && B) is false

|| (logical or) Called Logical OR Operator. If

any of the two operands are non-

zero, then the condition becomes

true.

A || B) is true

! (logical not) Called Logical NOT Operator.

Use to reverses the logical state of

its operand. If a condition is true

then Logical NOT operator will

make false.

!(A && B)

BIM – JAVA – CHAPTER 2.2

(3)
https://www.asheshneupane.com.np https://www.highapproach.com

Assignment Operators

Following are the assignment operators supported by Java language

Operator Description Example
= Simple assignment operator.

Assigns values from right side

operands to left side operand.

C = A + B will assign value of A +

B into C

+ = Add AND assignment operator. It

adds right operand to the left

operand and assign the result to

left.

C += A is equivalent to C = C + A

 -= Subtract AND assignment

operator. It subtracts right operand

from the left operand and assign

the result to left operand.

C -= A is equivalent to C = C – A

 *= Multiply AND assignment

operator. It multiplies right

operand with the left operand and

assign the result to left operand.

C *= A is equivalent to C = C * A

/= Divide AND assignment operator.

It divides left operand with the

right operand and assign the result

to left operand.

C /= A is equivalent to C = C /A

%= Modulus AND assignment

operator. It takes modulus using

two operands and assign the result

to left operand.

C %= A is equivalent to C = C%A

<<= Left shift AND assignment

operator.

C <<= 2 is same as C = C << 2

>>= Right shift AND assignment

operator.

C >>= 2 is same as C = C >>2

&= Bitwise AND assignment operator. C &= 2 is same as C = C&2

^= bitwise exclusive OR and

assignment operator

C ^= 2 issame as C = C ^ 2

|= bitwise inclusive OR and

assignment operator.

C | = 2 issame as C = C | 2

Conditional Operator (? :)

Conditional operator is also known as the ternary operator. This operator consists of three operands and is used

to evaluate Boolean expressions. The goal of the operator is to decide, which value should be assigned to the

variable. The operator is written as

variable x = (expression) ? value if true : value if false

Control Statements

A programming language uses control statements to cause the flow of execution to advance and branch based on

changes to the state of a program. Java’s program control statements can be put into the following categories:

selection, iteration, and jump.

 - Selection statements allow our program to choose different paths of execution based upon the outcome of an

expression or the state of a variable.

- Iteration statements enable program execution to repeat one or more statements (that is, iteration statements

form loops).

- Jump statements allow our program to execute in a nonlinear fashion.

BIM – JAVA – CHAPTER 2.2

(4)
https://www.asheshneupane.com.np https://www.highapproach.com

Java’s Selection Statements

Java supports two selection statements: if and switch. These statements allow you to control the flow of your

program’s execution based upon conditions known only during run time.

if

The if statement is Java’s conditional branch statement. It can be used to route programexecution through two

different paths. Here is the general form of the if statement:

if (condition)

 statement1;

else

 statement2;

The if works like this: If the condition is true, then statement1 is executed. Otherwise, statement2 (if it exists) is

executed. In no case will both statements be executed. For example, consider

int a,b;

// …

if(a<b)

a = 0;

else

b = 0;

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are they both set to zero.

Nested if

A nested if is an if statement that is the target of another if or else. Nested ifs are very common in programming.

When you nest ifs, the main thing to remember is that an else statement always refers to the nearest if statement

that is within the same block as the else and that is not already associated with an else. Here is an example:

if(i = = 10) {

 if(j<20) a=b;

 if(k<100) c=d;

 else a=c;

}

else a=d;

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the if-else- if ladder. It looks

like this:

if(condition)

 statements;

else if(condition)

 statements;

else if(condition)

 statements;

……………

……………

else

 statements;

BIM – JAVA – CHAPTER 2.2

(5)
https://www.asheshneupane.com.np https://www.highapproach.com

Switch

The switch statement is Java’s multiway branch statement. It provides an easy way to dispatch execution to

different parts of your code based on the value of an expression. As such, it often provides a better alternative

than a large series of if-else-if statements. Here is the general form of a switch statement:

switch(expression) {

case value1:

 // statement sequence

 break;

case value2:

 // statement sequence

 break;

………..

……….

case valueN:

 // statement sequence

 break;

default:

 // default statement sequence

}

Iteration Statement

Java’s iteration statements are for, while, and do-while. These statements create what we commonly call loops.

As you probably know, a loop repeatedly executes the same set of instructions until a termination condition is

met. A loop statement allows us to execute a statement or group of statements multiple times.

for loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to be executed a

specific number of times. A for loop is useful when you know how many times a task is to be repeated. The

syntax of a for loop is:

for(initialization; Boolean_expression; update) {

 // Statements

}

while loop

A while loop statement in Java programming language repeatedly executes a target statement as long as a given

condition is true. The syntax of a while loop is:

while(Boolean_expression) {

 // Statements

}

Here, key point of the while loop is that the loop might not ever run. When the expression is tested and the result

is false, the loop body will be skipped and the first statement after the while loop will be executed.

do while loop

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed toexecute at least one

time. Following is the syntax:

do {

 // Statements

}while(Boolean_expressions);

BIM – JAVA – CHAPTER 2.2

(6)
https://www.asheshneupane.com.np https://www.highapproach.com

Nested Loop

Like all other programming languages, Java allows loops to be nested. That is, one loop maybe inside another.

For example, here is a program that nests for loops:

class StarPattern {

 public static void main(String[] args) {

 for(int i=1;i<=5;i++) {

 for(int j=1;j<=i;j++) {

 System.out.print("* ");

 }

 System.out.print("\n");

 }

 }

}

The output produced by this program is shown here:

*

* *

* * *

* * * *

* * * * *

Jump Statements

Java supports three jump statements: break, continue, and return. These statements transfer control to another

part of our program.

Using Break

In Java, the break statement has three uses. First, as you have seen, it terminates a statement sequence in a

switch statement. Second, it can be used to exit a loop. Third, it can be used as a “civilized” form of goto.

BIM – JAVA – CHAPTER 2.2

(7)
https://www.asheshneupane.com.np https://www.highapproach.com

Using Break to Exit a Loop

By using break, you can force immediate termination of a loop, by passing the conditional expression and any

remaining code in the body of the loop. When a break statement is encountered inside a loop, the loop is

terminated and program control resumes at the next statement following the loop. Here is a simple example:

// Using break to exit a loop

class BreakLoop {

 public static void main(String[] args) {

 for(int i=0;i<100;i++) {

 if(i==10) break; //terminate loop if i is 10

 System.out.println("i: "+i);

 }

 System.out.println("Loop Complete");

 }

}

This program generates the following output:

i: 0

i: 1

i: 2

i: 3

i: 4

i: 5

i: 6

i: 7

i: 8

i: 9

Loop Complete

As we can see, although the for loop is designed to run from 0 to 99, the break statement causes it to terminate

early, when i equals 10.

Using Continue

Sometimes it is useful to force an early iteration of a loop. That is, you might want to continue running the loop

but stop processing the remainder of the code in its body for this iteration. This is, in effect, a goto just past the

body of the loop, to the loop’s end. The continue statement performs such an action.

In a while and do-while loops, a continue statement causes control to be transferred directly to the conditional

expression that controls the loop. In a for loop, control goes first to the iteration portion of the for statement and

then to the conditional expression. For all three loops, any intermediate code is bypassed.

BIM – JAVA – CHAPTER 2.2

(8)
https://www.asheshneupane.com.np https://www.highapproach.com

Here is an example program that uses continue to cause two numbers to be printed on each line:

// Demonstrate Continue

class Continue {

 public static void main(String[] args) {

 for(int i=0;i<10;i++) {

 System.out.print(i+" ");

 if(i%2==0) continue;

 System.out.println("");

 }

 }

}

This code uses the % operator to check if i is even. If it is, the loop continues without printing a newline. Here is

the output from this program:

0 1

2 3

4 5

6 7

8 9

Using return

The last control statement is return. The return statement is used to explicitly return from a method. That is, it

causes program control to transfer back to the caller of the method. As such, it is categorized as a jump

statement.

Example:

class A {

 int a,b,sum;

 public int add() {

 a=10;

 b=15;

 sum=a+b;

 return sum;

 }

}

class B {

 public static void main(String[] args) {

BIM – JAVA – CHAPTER 2.2

(9)
https://www.asheshneupane.com.np https://www.highapproach.com

 A obj=new A();

 int res=obj.add();

 System.out.print("Sum of two numbers is:"+res);

 }

}

Output:

Sum of two numbers is:25

Differences between For, While & Do While Loop

For Loop While Loop Do While Loop

Initialization is done inside the loop

statement.

Initialization is done outside the

loop statement.

Initialization is done outside the

loop statement.

Condition is checked before each

iteration.

Condition is checked before each

iteration.

Condition is checked after each

iteration.

The loop may not execute even

once.

The loop may not execute even

one.

The loop executes at least once.

Syntax:

for(initialization;condition;updating)

{

 // statements;

}

Syntax:

while(condition)

{

 // statements;

}

Syntax:

do

{

 // statements;

}

while(condition);

It is also called counter controlled

loop as loop is controlled by a

counter value, at each iteration

counter value will increase or

decrease.

It does not need a counter value

for its execution.

It does not need a conter value

for its execution.

Increment / Decrement operation is

specified within the loop statement.

Increment / Decrement operation

is done inside the loop.

Increment / Decrement operation

is done inside the loop.

It is Entry – Controlled Loop. It is Entry – Controlled Loop. It is Exit – Controlled Loop.

More compact and often easier to

read when iteration count is known.

Can be easier to read for loops

with complex conditions.

Can be easier to read when

ensuring at least one execution.

