
Er.Nipun Thapa

Unit 8: Modular Programming with
Functions

1 Nipun Thapa-Unit 8(C programming)

Introduction
 Function is a group of statements that together perform a task.

 Every C program has at least one function, which is main(), and all the most
trivial programs can define additional functions.

 We can divide up our code into separate functions.

 How it divide up our code among different functions is up to us, but logically
the division usually is so each function performs a specific task.

 A function declaration tells the compiler about a function's name, return
type, and parameters.

 A function definition provides the actual body of the function.

 The C standard library provides numerous built-in functions that our program
can call.

 For example, function strcat() to concatenate two strings, function memcpy() to
copy one memory location to another location and many more functions.

 A function is known with various names like a method or a sub-routine or a
procedure, etc.

2 Nipun Thapa-Unit 8(C programming)

Introduction

Nipun Thapa-Unit 8(C programming) 3

So function in a C program has some properties discussed below.

 Every function has a unique name. This name is used to call function
from “main()” function. A function can be called from within another
function.

 A function is independent and it can perform its task without
intervention from or interfering with other parts of the program.

 A function performs a specific task. A task is a distinct job that your
program must perform as a part of its overall operation, such as
adding two or more integer, sorting an array into numerical order, or
calculating a cube root etc.

 A function returns a value to the calling program. This is optional and
depends upon the task your function is going to accomplish. Suppose
you want to just show few lines through function then it is not
necessary to return a value. But if you are calculating area of rectangle
and wanted to use result somewhere in program then you have to
send back (return) value to the calling function.

Introduction

Nipun Thapa-Unit 8(C programming) 4

 C language is collection of various inbuilt functions.

 If you have written a program in C then it is evident that
you have used C’s inbuilt functions. Printf, scanf, clrscr etc.
all are C’s inbuilt functions.

 You cannot imagine a C program without function.

 Function in C programming is a reusable block of code that
makes a program easier to understand, test and can be
easily modified without changing the calling program.
Functions divide the code and modularize the program for
better and effective results. In short, a larger program is
divided into various subprograms which are called as
functions

Introduction

Nipun Thapa-Unit 8(C programming) 5

Advantage

Nipun Thapa-Unit 8(C programming) 6

There are the following advantages of C functions.

 By using functions, we can avoid rewriting same logic/code
again and again in a program.

 We can call C functions any number of times in a program
and from any place in a program.

 We can track a large C program easily when it is divided
into multiple functions.

 Reusability is the main achievement of C functions.

 However, Function calling is always a overhead in a C
program.

Types of Functions

Nipun Thapa-Unit 8(C programming) 7

There are two types of functions in C programming:

 Library Functions:

 are the functions which are declared in the C header
files such as scanf(), printf(), gets(), puts(), ceil(),
floor() etc.

 User-defined functions:

 are the functions which are created by the C
programmer, so that he/she can use it many times. It
reduces the complexity of a big program and
optimizes the code.

Elements or Components of Function

Nipun Thapa-Unit 8(C programming) 8

A function usually has three components. They are:

1. Function Prototype/Declaration

2. Function Definition

3. Function Call

1. Function Prototype/Declaration

Nipun Thapa-Unit 8(C programming) 9

 Function declaration means writing a name of a program.

 It is a compulsory part for using functions in code.

 In a function declaration, we just specify the name of a function that
we are going to use in our program like a variable declaration.

 We cannot use a function unless it is declared in a program.

 A function declaration is also called "Function prototype.“

 Function declaration is a statement that informs the compiler about

 Name of the function

 Type of arguments

 Number of arguments

 Type of Return value

1. Function Prototype/Declaration

Nipun Thapa-Unit 8(C programming) 10

The function declarations (called prototype) are
usually done above the main () function and take the
general form:

return_data_type function_name (data_type arguments);

 The return_data_type: is the data type of the value
function returned back to the calling statement.

 The function_name: is followed by parentheses
 Arguments names with their data type declarations

optionally are placed inside the parentheses.

1. Function Prototype/Declaration

Nipun Thapa-Unit 8(C programming) 11

 We consider the following program that shows how to
declare a cube function to calculate the cube value of
an integer variable

 #include <stdio.h>

 /*Function declaration*/

 int add(int a,b);

 /*End of Function declaration*/

2. Function Definition

Nipun Thapa-Unit 8(C programming) 12

 Function definition means just writing the body of a function. A body of a function
consists of statements which are going to perform a specific task. A function body
consists of a single or a block of statements. It is also a mandatory part of a function.

Syntax for function definition

 returntype function_name ([arguments])

 {

 statement(s);

 }

Example :

 int add(int a,int b) //function body

 {

 int c;

 c=a+b;

 return c;

 }

3. Function call

Nipun Thapa-Unit 8(C programming) 13

 A function call means calling a function whenever it is
required in a program. Whenever we call a function, it
performs an operation for which it was designed. A
function call is an optional part in a program.

Syntax for function call

 function_name ([actual arguments]);

For example,

 sort(a);

 p = add(x,y);

LAB 6: Q.N.1: Program to find the sum of integer using function

Nipun Thapa-Unit 8(C programming) 14

#include<stdio.h>

int add(int x,int y);

int main()

{

 int a=10,b=20,sum;

 sum=add(a,b);

 printf("The sum of %d and %d = %d",a,b,sum);

 return 0;

}

int add(int x,int y)

{

 int m;

 m=x+y;

 return m;

}

LAB 6: Q.N.2: Program to find greatest number among two number using
function

Nipun Thapa-Unit 8(C programming) 15

#include<stdio.h>

int large(int x,int y)

{

 if(x>y)

 return x;

 else

 return y;

}

int main()

{

 int a,b,c;

 printf("Enter two number:");

 scanf("%d%d",&a,&b);

 c=large(a,b);

 printf("Large value = %d",c);

 return 0;

}

LAB 6: Q.N.3: Program to find greatest number among three number using
function

Nipun Thapa-Unit 8(C programming) 16

#include<stdio.h>

int large(int x,int y)

{

 if(x>y)

 return x;

 else

 return y;

}

int main()

{

 int a,b,c,d,e;

 printf("Enter two number:");

 scanf("%d%d%d",&a,&b,&c);

 d=large(a,b);

 e=large(d,c);

 printf("Large value = %d",e);

 return 0;

}

4. The return and void statement

Nipun Thapa-Unit 8(C programming) 17

The return statement serves two purpose:

 It immediately transfer the control back to the calling
function (ie no statements within the function body
after the return statement are executed).

 It return the value to the calling function.

Syntax

return (expression)

 Where expression, is optional and, if present, it must evaluate to a

value of the data type specified in the function header for the
return_type.

Function Parameters

Nipun Thapa-Unit 8(C programming) 18

 A parameter is like a placeholder. When a function is invoked, you pass a
value to the parameter. This value is referred to as actual parameter or
argument. The parameter list refers to the type, order, and number of the
parameters of a function.

 Parameters are optional; that is, a function may contain no parameters. A
Parameter is the symbolic name for "data" that goes into a function. There
are two ways to pass parameters in C: Pass by Value, Pass by Reference.

 Pass by Value
 Pass by Value, means that a copy of the data is made and stored by way of the

name of the parameter. Any changes to the parameter have NO affect on data
in the calling function.

 Pass by Reference
 A reference parameter "refers" to the original data in the calling function. Thus

any changes made to the parameter are ALSO MADE TO THE
ORIGINAL variable.

Categories of user defined function
(Different forms of function)

Nipun Thapa-Unit 8(C programming) 19

There can be 4 different types of user-defined functions, they are:

 Function with no arguments and no return value

 Function with no arguments and a return value

 Function with arguments and no return value

 Function with arguments and a return value

1.Function with no arguments and no return value

Nipun Thapa-Unit 8(C programming) 20

 In this method, We won’t pass any arguments to the
function while defining, declaring, or calling the function.

 This type of functions in C will not return any value when
we call the function from main() or any sub-function.

 When we are not expecting any return value, but we need
some statements to print as output. Then, this type of
function in C is very useful.

Nipun Thapa-Unit 8(C programming) 21

 In these types of Functions in C program, We are going to calculate the Sum of
2 integer values and print the output from the user-defined function itself.

1.Function with no arguments and no return value

LAB 6: Q.N.4

2. Function with no arguments and a return value

Nipun Thapa-Unit 8(C programming) 22

 In this method, We won’t pass any arguments to the
function while defining, declaring, or calling the function.

 This type of function will return some value when we call
the function from main() or any sub function.

 The Data Type of the return value will depend upon the
return type of function declaration.

 For instance, if the return type is int then return value will
be int.

Nipun Thapa-Unit 8(C programming) 23

 In this program, We are going to calculate the multiplication of 2 integer values using the
user-defined function without arguments and return keyword.

2. Function with no arguments and a return value

#include<stdio.h>
int Multiplication();
int main()
{

 int Multi;
 Multi = Multiplication();
 printf("\n Multiplication of a and b is = %d \n", Multi);
 return 0;

}
int Multiplication()
{

 int Multi, a = 20, b = 40;
 Multi = a * b;
 return Multi;

}

LAB 6: Q.N.5

3.Function with arguments and no return value

Nipun Thapa-Unit 8(C programming) 24

 If you observe the above two methods, No matter how
many times you executive, it will give the same output. We
don’t have any control over the values of the variables a
and b because they are fixed values.

 In real-time, we mostly deal with dynamic data means we
have to allow the user to enter his own values rather than
fixed ones.

 This method allows us to pass the arguments to the
function while calling the function. But, This type of
function will not return any value when we call the
function from main () or any sub function.

 If we want to allow the user to pass his data to the
function arguments, but we are not expecting any return
value, this type of function is very useful.

Nipun Thapa-Unit 8(C programming) 25

 These Types of Functions in C program allows the user to enter 2 integer
values. Next, We are going to pass those values to the user-defined function to
calculate the sum.

3.Function with arguments and no return value

#include<stdio.h>
void Addition(int a, int b);
void main()
{

 int a, b;
 printf("\n Please Enter two integer values \n");
 scanf("%d %d",&a, &b);
 //Calling the function with dynamic values
 Addition(a, b);

}
void Addition(int a, int b)
{

 int Sum;
 Sum = a + b;
 printf("\n Additiontion of %d and %d is = %d \n", a, b, Sum);

}

LAB 6: Q.N.6

4. Function with arguments and a return value

Nipun Thapa-Unit 8(C programming) 26

 This method allows us to pass the arguments to the function while
calling the function.

 This type of function will return some value when we call the function
from main () or any sub function.

 Data Type of the return value will depend upon the return type of
function declaration. For instance, if the return type is int then return
value will be int.

 This type of user-defined function is called a fully dynamic function,
and it provides maximum control to the end-user.

Nipun Thapa-Unit 8(C programming) 27

 This Types of Functions in C program allows the user to enter 2 integer values. And then,
We are going to pass those values to the user-defined function to multiply those values
and return the value using the return keyword.

4. Function with arguments and a return value

LAB 6: Q.N.7

Example 1: No arguments passed and no return value

Nipun Thapa-Unit 8(C programming) 28

void checkPrimeNumber();

int main()

{

 checkPrimeNumber();

 return 0;

}

void checkPrimeNumber()

{

 int n, i, flag = 0;

 printf("Enter a positive integer: ");

 scanf("%d",&n);

 for(i=2; i <= n/2; ++i)
 {
 if(n%i == 0)
 {
 flag = 1;
 break;
 }
 }
 if (flag == 1)
 printf("%d is not a prime number.", n);
 else
 printf("%d is a prime number.", n);
}

LAB 6: Q.N.8

Example 2: No arguments passed but a return value

Nipun Thapa-Unit 8(C programming) 29

#include <stdio.h>

int getInteger();

int main()

{

 int n, i, flag = 0;

 n = getInteger();

 for(i=2; i<=n/2; ++i)

 {

 if(n%i==0){

 flag = 1;

 break;

 }

 }

 if (flag == 1)

 printf("%d is not a prime number.", n);

 else

 printf("%d is a prime number.", n);

 return 0;

}

int getInteger()
{
 int n;
 printf("Enter a positive integer: ");
 scanf("%d",&n);
 return n;
}

LAB 6: Q.N.9

Example 3: Argument passed but no return value

Nipun Thapa-Unit 8(C programming) 30

#include <stdio.h>

void checkPrimeAndDisplay(int n);

int main()

{

 int n;

 printf("Enter a positive integer: ");

 scanf("%d",&n);

 checkPrimeAndDisplay(n);

 return 0;

}

void checkPrimeAndDisplay(int n)
{
 int i, flag = 0;
 for(i=2; i <= n/2; ++i)
 {
 if(n%i == 0){
 flag = 1;
 break;
 }
 }
 if(flag == 1)
 printf("%d is not a prime number.",n);
 else
 printf("%d is a prime number.", n);
}

LAB 6: Q.N.10

Example 4: Argument passed and a return value

Nipun Thapa-Unit 8(C programming) 31

#include <stdio.h>

int checkPrimeNumber(int n);

int main()

{

 int n, flag;

 printf("Enter a positive integer: ");

 scanf("%d",&n);

 flag = checkPrimeNumber(n);

 if(flag == 1)

 printf("%d is not a prime number",n);

 else

 printf("%d is a prime number",n);

 return 0;

}

int checkPrimeNumber(int n)
{
 int i;
 for(i=2; i <= n/2; ++i)
 {
 if(n%i == 0)
 return 1;
 }
 return 0;
}

LAB 6: Q.N.11

Recursion and Recursive function

Nipun Thapa-Unit 8(C programming) 32

 Recursion is the process of repeating items in a self-similar way. In
programming languages, if a program allows you to call a function inside the
same function, then it is called a recursive call of the function.

 void recursion()

 {

 recursion(); /* function calls itself */

 }

 int main()

 {

 recursion();

 }

 The C programming language supports recursion, i.e., a function to call itself.
But while using recursion, programmers need to be careful to define an exit
condition from the function, otherwise it will go into an infinite loop.

 Recursive functions are very useful to solve many mathematical problems,
such as calculating the factorial of a number, generating Fibonacci series, etc.

Recursion and Recursive function

Nipun Thapa-Unit 8(C programming) 33

LAB 6 Q.N.12 : Program to compute the factorial of a number using recursion.

Nipun Thapa-Unit 8(C programming) 34

#include <stdio.h>

int fact (int n);

int main()

{

 int n,f;

 printf("Enter the number:");

 scanf("%d",&n);

 f = fact(n);

 printf("factorial = %d",f);

 return 0;

}

int fact(int n)

{

 if (n==0)

 return 0;

 else if (n == 1)

 return 1;

 else

 return n*fact(n-1);

}

LAB 6 Q.N.13: Program to find Fibonacci series of a number using recursion.

Nipun Thapa-Unit 8(C programming) 35

#include <stdio.h>

int fib(int n);

int main()

{

 int n,i;

 printf("Enter the number:");

 scanf("%d",&n);

 for(i=0;i<=n;i++)

 printf("%d\t",fib(i));

 return 0;

}

int fib(int n)

{

 if (n==0)

 return 0;

 if (n==1)

 return 1;

 else

 return (fib(n-1)+fib(n-2));

}

Comparison of iteration and recursion

Nipun Thapa-Unit 8(C programming) 36

Property Recursion Iteration

Definition Function calls itself. A set of instructions repeatedly executed.

Application For functions. For loops.

Termination
Through base case, where there will be no
function call.

When the termination condition for the
iterator ceases to be satisfied.

Usage
Used when code size needs to be small, and
time complexity is not an issue.

Used when time complexity needs to be
balanced against an expanded code size.

Code Size Smaller code size Larger Code Size.

Time
Complexity

Very high(generally exponential) time
complexity.

Relatively lower time complexity(generally
polynomial-logarithmic).

Example

int fact(int n)
{
 If(n==0)
 return 1;
 else
 return (n* fact(n-1));
}

int fact(int n) {
int I, result=1;
If(n==0)
 return 1;
else
 for(i=1;i<=n;i++)
 result=result * I;
return result;
}

Passing Array to function

Nipun Thapa-Unit 8(C programming) 37

 Just like variables, array can also be passed to a
function as an argument .

Nipun Thapa-Unit 8(C programming) 38

#include <stdio.h>

int sum(int n[]);

void display(int n[]);

int main()

{

 int i,a[10];

 printf("Enter 10 number:");

 for(i=0;i<10;i++)

 scanf("%d",&a[i]);

 display(a);

 printf("\nThe sum of 10 number=%d",sum(a));

 return 0;

}

LAB 6: Q.N.13. : Program to read 10 number in an array and find their sum and
display using the function

int sum(int n[])
{
 int i,sum=0;
 for(i=0;i<10;i++)
 sum=sum+n[i];
 return sum;
}
void display(int n[])
{
 int i;
 printf("Your 10 numbers are:\n");
 for(i=0;i<10;i++)
 printf("%d\t",n[i]);
}

LAB 6.Q.N.14: Passing two-dimensional arrays

Nipun Thapa-Unit 8(C programming) 39

#include <stdio.h>

void displayNumbers(int num[2][2]);

int main()

{

 int num[2][2];

 printf("Enter 4 numbers:\n");

 for (int i = 0; i < 2; ++i)

 for (int j = 0; j < 2; ++j)

 scanf("%d", &num[i][j]);

 // passing multi-dimensional array to a
function

 displayNumbers(num);

 return 0;

}

void displayNumbers(int num[2][2])
{
 printf("Displaying:\n");
 for (int i = 0; i < 2; ++i) {
 for (int j = 0; j < 2; ++j) {
 printf("%d\n", num[i][j]);
 }
 }
}

Different types of function calls

Nipun Thapa-Unit 8(C programming) 40

The arguments in function can be passed in two ways:

1. Pass arguments by value

2. Pass argument by address or reference or pointers.

Pass arguments by value

Nipun Thapa-Unit 8(C programming) 41

#include <stdio.h>

void swap(int , int);

int main()

{

 int a,b;

 a=100;

 b=55;

 printf("\nBefore swapping a=%d\t b=%d :",a,b);

 swap(a,b);

 printf("\nAfter swapping a=%d\t b=%d :",a,b);

 return 0;

}

void swap(int a,int b)

{

 int temp;

 temp=a;

 a=b;

 b=temp;

 printf("\nThe function within function are:a=%d\tb=%d",a,b);

}

LAB 6: Q.N.15: program to swap two number using call by value

Pass argument by address or reference or pointers.

Nipun Thapa-Unit 8(C programming) 42

#include <stdio.h>

void swap(int * , int *);

int main()

{

 int a,b;

 a=100;

 b=55;

 printf("\nBefore swapping a=%d\t b=%d :",a,b);

 swap(&a,&b);

 printf("\nAfter swapping a=%d\t b=%d :",a,b);

 return 0;

}

void swap(int *a,int *b)

{

 int temp;

 temp=*a;

 *a=*b;

 *b=temp;

 printf("\nThe function within function are:a=%d\tb=%d",*a,*b);

}

LAB 6: Q.N.16: program to swap two number using call by reference

Nipun Thapa-Unit 8(C programming) 43

#include<stdio.h>
int calc(int x);
int main()
{
 int x = 10;
 x = calc(x);
 printf("value of x is %d", x);
 return 0;
}
int calc(int x)
{
 x = x + 10 ;
 return x;
}

Pass arguments by value
LAB 6: Q.N.17: program to illustrate using call by value

Nipun Thapa-Unit 8(C programming) 44

#include<stdio.h>

int calc(int *x);

int main()

{

 int x = 10;

 x = calc(&x);

 printf("value of x is %d", x);

 return 0;

}

int calc(int *x)

{

 *x = *x + 10 ;

 return *x;

}

Pass argument by address or reference or pointers.
LAB 6: Q.N.18: program to illustrate using call by reference

Finished

Nipun Thapa-Unit 8(C programming) 45

