
Er.Nipun Thapa

Chapter 9: Pointer and Strings

1 Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)

What is Pointer in C?
� The Pointer in C, is a variable that stores address of another variable.
� A pointer can also be used to refer to another pointer function.
� A pointer can be incremented/decremented, i.e., to point to the next/ previous memory

location.
� The purpose of pointer is to save memory space and achieve faster execution time.
� A pointer enable us to access a variable that is defined outside the function.
� Pointers are used in dynamic memory allocation
� They are used to pass array to functions.

� They produce compact, efficient and powerful code with high execution speed.
� The pointers are more efficient in handling the data table.
� They use array of pointers in character strings result in saving of data stroge space in

memory. Sorting string using pointer is very efficient.
� With the help of pointer, variable can be swapped without physically moving them.

� Pointer are closely associated with arrays and therefore provide an alternate way to
access individual array elements.

2 Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)

Concept of Pointers
� Whenever a variable is declared in a program, system allocates a

location i.e an address to that variable in the memory, to hold the
assigned value.

� This location has its own address number, which we just saw above.
� Let us assume that system has allocated memory location 80F for a

variable a.
int a = 10;

3 Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)

We can access the value 10 either by using the variable name a or by using its address 80F.
The variables which are used to hold memory addresses are called Pointer
variables.

Declaration and Initialization of Pointer Variables

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)4

Declaration of C Pointer variable
� Data type of a pointer must be same as the data type of

the variable to which the pointer variable is
pointing. void type pointer works with all data types, but is
not often used.

Syntax : datatype *pointer_name;
Here ,
� The asterisk(*) tells that the variable pointer_name is a pointer variabcle
� pointer_name needs a memory location
� pointer_name points to a variable of type data_type
Here are a few examples:

int *ip // pointer to integer variable
float *fp; // pointer to float variable
double *dp; // pointer to double variable
char *cp; // pointer to char variable

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)5

Declaration and Initialization of Pointer Variables

Initialization of C pointer variable
� Pointer Initialization is the process of assigning address of a variable to

a pointer variable.
� Pointer variable can only contain address of a variable of the same

data type.
� In C language address operator “&” is used to determine the address

of a variable. The “&” (immediately preceding a variable name) returns
the address of the variable associated with it.

int x;
int *ptr;
ptr=&x;

Here, x is an integer variable and pointer ptr is initiating with the address of x.

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)6

Valid Example Invalid Example

int *p int *p

int num float num;

p= &num p= &num

Declaration and Initialization of Pointer Variables

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)7

Declaration and Initialization of Pointer Variables

#include<stdio.h>
void main()

{
int a = 10;
int *ptr; //pointer declaration
ptr = &a; //pointer initialization

}

#include<stdio.h>
void main()
{

float a;
int *ptr;
ptr = &a; // ERROR, type mismatch

}

Pointer variable always point to
variables of same datatype. Let's
have an example to showcase this:

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)8

Declaration and Initialization of Pointer Variables

If you are not sure about which variable's address to assign to a pointer
variable while declaration, it is recommended to assign a NULL value to your
pointer variable. A pointer which is assigned a NULL value is called a NULL
pointer.

#include <stdio.h>

int main()
{

int *ptr = NULL;
return 0;

}

Using the pointer or Dereferencing of Pointer

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)9

Once a pointer has been assigned the address of a variable, to access the value
of the variable, pointer is dereferenced, using the indirection operator or
dereferencing operator *.

//Lab 7 QN1 : WAP to illustrate use of pointer
#include <stdio.h>
int main()
{

int a, *p; // declaring the variable and pointer
a = 10;
p = &a; // initializing the pointer
printf("value of a = %d", *p);
printf("\nValue of a = %d", *&a);
printf("\nAddress of a = %d", &a);
printf("\nAddress of a = %d", p);
printf("\nAddress of p = %d", &p);
return 0;

}

O/P

Initialization of C Pointer variable

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)10

� Pointer Initialization is the process of assigning address of a variable to
a pointer variable.

� It contains the address of a variable of the same data type. In C
language address operator & is used to determine the address of a variable.

� The & (immediately preceding a variable name) returns the address of the
variable associated with it.

int x = 10;
int *ptr; //pointer declaration
ptr = &x; //pointer initialization

Pointer to Pointer(Double Pointer)

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)11

� A pointer to a pointer is a form of multiple indirection, or a chain of
pointers.

� Normally, a pointer contains the address of a variable. When we define
a pointer to a pointer, the first pointer contains the address of the
second pointer, which points to the location that contains the actual
value as shown below.

A variable that is a pointer to a pointer must be declared as such. This is
done by placing an additional asterisk in front of its name. For example, the
following declaration declares a pointer to a pointer of type int −

int **var;

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)12

� When a target value is indirectly pointed to by a pointer to
a pointer, accessing that value requires that the asterisk
operator be applied twice, as is shown below in the
example −

Pointer to Pointer(Double Pointer)

How to declare a pointer to pointer in C?

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)13

� Declaring Pointer to Pointer is similar to declaring pointer in C. The
difference is we have to place an additional ‘*’ before the name of
pointer.

� Syntax:
int **ptr; // declaring double pointers

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)14

//Lab 7 QN2 : WAP to illustrate use of double pointer

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)15

#include <stdio.h>

// C program to demonstrate pointer to pointer

int main()

{
int var = 789;

int *ptr2;

int **ptr1;

// storing address of var in ptr2

ptr2 = &var;
// Storing address of ptr2 in ptr1

ptr1 = &ptr2;

// Displaying value of var using

// both single and double pointers

printf("Value of var = %d\n", var);
printf("Value of var using single pointer = %d\n", *ptr2);

printf("Value of var using double pointer = %d\n", **ptr1);

return 0;

}

Output:
Value of var = 789
Value of var using single pointer = 789
Value of var using double pointer = 789

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)16

#include <stdio.h>
int main ()
{

int var;
int *ptr;
int **pptr;
var = 3000;
ptr = &var;
pptr = &ptr;
printf("Value of var = %d\n", var);
printf("Value of var = %d\n", *ptr);
printf("Value of var = %d\n", **pptr);
printf("Address of var = %d\n",&var);
printf("Address of var = %d\n",ptr);
printf("Address of ptr = %d\n",&ptr);
printf("Address of ptr = %d\n",pptr);
printf("Address of pptr = %d\n",&pptr);
return 0;

}

//Lab 7 QN3 : WAP to illustrate use of double pointer

O/P

Array of Pointer

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)17

� A pointer variable always contains an address of a variable.
So, an array of pointers is actually an array of memory
addresses of different variables.

Syntax: data_type *pointer_name[size]

Example :

int *p[5];
This declaration an array of 5 pointers, each of which
contains the address of an integer. The first pointer is p[0] or
*p and the fifth pointer is p[4] or *p+4

Lab7 QN4: Illustating the use of array of pointer

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)18

#include<stdio.h>
Int main()
{

int a=1,b=2,c=3,d=4,e=5;
int *p[5];
int i;
p[0]=&a;
p[1]=&b;
p[2]=&c;
p[3]=&d;
p[4]=&e;
for(i=0;i<5;i++)
{

printf(“\nP[%d]=%d”,I,*p[i]);
}
return 0;

}

o/p
P[0]=1
P[1]=2
P[2]=3
P[3]=4
P[4]=5

Lab7 QN5: Illustating the use of array of pointer

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)19

#include<stdio.h>
Int main()
{

int a[5]={1,2,3,4,5};
int *p[5];
int i;

for(i=0;i<5;i++)
{

p[i]=&a[i];
printf(“\nP[%d]=%d”,I,*p[i]);

}
return 0;

}

o/p
P[0]=1
P[1]=2
P[2]=3
P[3]=4
P[4]=5

Lab7 QN6: Illustating the use of array of pointer

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)20

#include <stdio.h>
const int MAX = 3;
int main ()
{

int var[] = {10, 100, 200};
int i, *ptr[MAX];
for (i = 0; i < MAX; i++)
{

ptr[i] = &var[i]; /* assign the address of integer. */
}
for (i = 0; i < MAX; i++)
{

printf("Value of var[%d] = %d\n", i, *ptr[i]);
}
return 0;

}

Lab7 QN6: Illustating the use of array of pointer

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)21

#include <stdio.h>
const int MAX = 4;
int main ()
{

char *names[] = { "Zara Ali", "Hina Ali", "Nuha Ali", "Sara Ali" };
int i = 0;
for (i = 0; i < MAX; i++)
{

printf("Value of names[%d] = %s\n", i, names[i]);
}
return 0;

}

o/p
Value of names[0] = Zara Ali
Value of names[1] = Hina Ali
Value of names[2] = Nuha Ali
Value of names[3] = Sara Ali

Passing Pointer to function

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)22

� C programming allows passing a pointer to a function.
� To do so, simply declare the function parameter as a

pointer type.

Lab 7 QN7: Program that lower case letter to upper case and upper case
to lower case by passing of pointer to function.

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)23

#include<stdio.h>
Void conversion(char *);
Int main()
{

char ch;
printf(“enter character:”);
scanf(“%c”,&ch);
conversion(&ch);
printf(“After conversion:%c”,ch)
return 0;

}
Void conversion(char *c)
{

if(*c>=97 && *c<=122)
*c=*c -32;

else if(*c>=65 && *c<=90)
*c = *c+32;

}

Pointer Arithmetic

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)24

� We can perform arithmetic operations on the pointers like
addition, subtraction, etc.

� However, as we know that pointer contains the address,
the result of an arithmetic operation performed on the
pointer will also be a pointer if the other operand is of type
integer.

� In pointer-from-pointer subtraction, the result will be an
integer value. Following arithmetic operations are possible
on the pointer in C language:
� Increment
� Decrement
� Addition
� Subtraction
� Comparison

Incrementing Pointer in C

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)25

� If we increment a pointer by 1, the pointer will start
pointing to the immediate next location.

� This is somewhat different from the general arithmetic
since the value of the pointer will get increased by the
size of the data type to which the pointer is pointing.

new_address= current_address + i * size_of(data type)

32-bit
For 32-bit int variable, it will be incremented by 2 bytes.
64-bit
For 64-bit int variable, it will be incremented by 4 bytes.

Lab 7 QN8: Illustrate the example of increment pointer

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)26

#include<stdio.h>
int main()
{

int number=50;
int *p;//pointer to int
p=&number;//stores the address of number variable
printf("Address of p variable is %u \n",p);
p=p+1;
printf("After increment: Address of p variable is %u \n",p);
// in our case, p will get incremented by 4 bytes.
return 0;

} o/p
Address of p variable is 3214864300
After increment: Address of p variable is 3214864304

Decrementing Pointer in C

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)27

� Like increment, we can decrement a pointer variable.
If we decrement a pointer, it will start pointing to the
previous location.

� The formula of decrementing the pointer is given
below:

new_address= current_address - i * size_of(data type)

32-bit
For 32-bit int variable, it will be decremented by 2 bytes.
64-bit
For 64-bit int variable, it will be decremented by 4 bytes.

Lab 7 QN8: Illustrate the example of increment pointer

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)28

#include<stdio.h>
int main()
{

int number=50;
int *p;//pointer to int
p=&number;//stores the address of number variable
printf("Address of p variable is %u \n",p);
p=p-1;
printf("After increment: Address of p variable is %u \n",p);
// in our case, p will get incremented by 4 bytes.
return 0;

}
o/p
Address of p variable is 3214864300
After increment: Address of p variable is 3214864296

String and Pointer

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)29

� We know that a string is a sequence of characters which we save in an array.
� And in C programming language the \0 null character marks the end of a

string.
Creating a string
� In the following example we are creating a string str using char character array

of size 6.
char str[6] = "Hello";

The above string can be represented in memory as follows.

Each character in the string str takes 1 byte of memory space.

String and Pointer

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)30

Creating a pointer for the string
� The variable name of the string str holds the address of the first element of

the array i.e., it points at the starting memory address.
� So, we can create a character pointer ptr and store the address of the

string str variable in it. This way, ptr will point at the string str.
� In the following code we are assigning the address of the string str to the

pointer ptr.
char *ptr = str;

We can represent the character pointer variable ptr as follows.

Lab 7 QN9; In the following example we are using while loop
to print the characters of the string variable str.

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)31

#include <stdio.h>
int main(void)
{

// string variable
char str[6] = "Hello";
// pointer variable
char *ptr = str;
// print the string
while(*ptr != '\0’)
{
printf("%c", *ptr); // move the ptr pointer to the next memory location
ptr++;
}
return 0;

}

String functions in c language with examples

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)32

� There are various string functions which we can use in C
Language.

� We need to include header file string.h in our program to use
these functions in our program.

Various string functions in c language are:
� strcpy()
� strncpy()
� strcat()
� strlen()
� strrev()
� strcmp()
� strcmpi()
� strncmp()
� strlwr()
� strupr()

1. strcpy()

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)33

� strcpy() stands for string copy. This function is used to copy value of
one string variable or string constant in another string variable.

� The header file required for this function is “string.h”.
The syntax for strcpy() is

strcpy(Str_Target,Str_Source);
� Str_Target is the string variable in which want to store the value.
� Str_Source is the string value which we want to store in string

variable Str_Target. This value can be a string constant or a string
variable. Size of Str_Target should be larger than or equal to the size of
value to be stored in the variable.

We can’t assign value to a string variable directly as
char name[20];
name=”Amit”;
In place of assignment operator =, we need to use strcpy() function.
char name[20];
strcpy(name,”Amit”);

Lab 7 Qn10:Program to demonstrate the use of strcpy() function

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)34

#include<stdio.h>
#include<string.h>
int main()
{

char studentname[20];
strcpy(studentname,”Amit”);
printf(“\nStudentname=%s”,studentname);
return 0;

}

Output

Studentname=Amit

2. strcat()

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)35

� strcat() stands for string concat.
� This function is used to combine values of two string variables

together.
� The header file required for this function is “string.h”.
� The syntax for strcat() function is

strcat(Str_Target,Str_Source);
� Str_Target is the string variable whose value we want to combine

with some other string value.
� Str_Source is the string value which we want to combine with the

value of string variable
Str_Target. This value can be a string constant or a string variable. Size

of Str_Target should be larger than or equal to the combined size
of Str_Target and Str_Source.

Lab 7 QN11: Program to demonstrate the use of strcat() function.

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)36

#include<stdio.h>
#include<string.h>
int main()
{

char studentname[20]=”Amit”;
strcat(studentname,” Singh”);
printf(“\nStudentname=%s”,studentname);
return(0);

}
Output

Studentname=Amit Singh

In above program, string variable studentname contains value
“Amit”. After applying strcat() function, its value will be
concatenated with “ Singh” and the final value of string
variable studentname would become Amit Singh

3. strlen()

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)37

� strlen() stands for string length.
� This function is used to find number of characters

stored in a string variable or string constant.
� This function doesn’t count null character.
� The header file required for this function is “string.h”

Lab7: Qn12: Program to demonstrate the use of strlen() function.

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)38

#include<stdio.h>
#include<string.h>
int main()
{

char studentname[20]=”Amit”;
int n;
n=strlen(studentname);
printf(“\nNumber of characters=%d”,n);
return(0);

}
Output

Number of characters=4

In above program, string variable studentname contains value “Amit”.
strlen() function finds number of characters in the value “Amit” in string
variable studentname that contains 4 characters. So strlen() would
return 4.

4. strcmp()

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)39

� strcmp() stands for string compare.
� This function is used to compare value of one string value

with another string value.
� The header file required for this function is “string.h”.
� This Function returns 0 if the values of both the strings

being compared are same.

Lab7: QN13: Program to demonstrate the use of strcmp() function.

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)40

#include<stdio.h>
#include<string.h>
int main()
{

char studentname[25];
strcpy(studentname,”Amita”);
if(strcmp(studentname,”Amit”)= =0)

printf(”\nWelcome”);
else

printf(”\nBye”);
return(0);

}
Output

Bye

In this program, string variable studentname has been assigned value “Amita”. Further in the
program, value of string variable studentname has been compared with the string value Amit.
If the value of studentname matches Amit it would show Welcome.
But in the program, the value of studentname doesn’t match Amit so the output would be Bye.

Unit 9

Nipun Thapa-C Programming-BIM2nd-NCC (Unit 9)41

Finished

