
Er. Nipun Thapa

Unit 3 : Input/output Management

3.1. Input/output Management
 Input means to provide the program with some data to be used

in the program and Output means to display data on screen or
write the data to a printer or a file.

 C programming language provides many built-in functions to
read any given input and to display data on screen when there is
a need to output the result.

 All these built-in functions are present in C header files.
 C language has standard libraries that allow input and output in

a program.
 The stdio.h or standard input output library in C that has

methods for input and output.
 The input/output functions are classified into two types:

1. Formatted functions
2. Unformatted functions

2 Nipun Thapa - BIM2nd - Unit 3 - C programming

3.2. Formatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 3

 Formatted console input/output functions are used to take
one or more inputs from the user at console and it also
allows us to display one or multiple values in the output to
the user at the console.

 These functions allow to supply input or display output in
user desired format.

 printf() and scanf() are examples for formatted input and
output functions.

 Formatted input and output functions contain format
specifier in their syntax.

 They are used for storing data more user friendly.

 They are used with all data types.

3.2. Formatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 4

Formatted Input
 The built-in function scanf() can be used to input data into

the computer from a standard input device.
 The function can be used to input an numerical value,

single character or string.
 The general form of scanf() is:
 scanf(“Control string”, arg1, arg2,…….., argN);

 The control string refers to the field format in which the
data is to be entered.

 The arguments arg1,arg2,….,argN specify the address of
locations where the data is stored.

 Generally, arguments are precede by ampersand(&) to
denote memory address.

3.2. Formatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 5

Formatted Input

 scanf() function reads all types of data value from
input devices (or) from a file.

 The address operator '&' is to indicate the memory
location of the variable.

 This memory location is used to store the data which
is read through keyboard.

 The scanf() method, in C, reads the value from the
console as per the type specified.

3.2. Formatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 6

Formatted Input
Syntax:

scanf(“%X”, &variableOfXType);

 where %X is the format specifier in C.

 It is a way to tell the compiler what type of

data is in a variable and & is the address operator in C,
which tells the compiler to change the real value of this
variable, stored at this address in the memory.

3.2. Formatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 7

Format String Meaning

%d Scan or print an integer as signed decimal number

%f Scan or print a floating point number

%c To scan or print a character

%s To scan or print a character string. The scanning ends at
whitespace.

3.2. Formatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 8

Formatted Output

 The function printf() is used for formatted output to standard output
based on a format specification. The format specification string, along
with the data to be output, are the parameters to the printf() function.

Syntax:

 printf (format, data1, data2,……..);
 In this syntax format is the format specification string. This string contains,

for each variable to be output, a specification beginning with the symbol %
followed by a character called the conversion character.

Example:

printf (“%c”, data1);
 The character specified after % is called a conversion character because it

allows one data type to be converted to another type and printed.

3.2. Formatted I/O (Example)

Nipun Thapa - BIM2nd - Unit 3 - C programming 9

#include<stdio.h>

int main()

{

 int a;

 printf(“Enter value of a:”);

 scanf(“%d”, &a);

 printf(“ a = %d”, a);

 return 0;

}

3.2. Formatted I/O (Example)

Nipun Thapa - BIM2nd - Unit 3 - C programming 10

 Write a program to show the usage of whitespace character in scanf()
function.

#include<stdio.h>

int main()

{
 int n1;

char ch;
printf(“enter a number:”);
scanf(“%d”,&n1);
printf(“enter a character:”);
scanf(“%c”,&ch);
printf(“\nnumber: %d \n character : %c”,n1,ch);
return 0;

}

3.2. Formatted I/O (Example)

Nipun Thapa - BIM2nd - Unit 3 - C programming 11

 Write a program to show the use of ordinary character in
control string of scanf() function.

#include<stdio.h>

Int main()

{
int day, month, year;

printf(“enter your date of birth in sequence”);

printf(“day, month and then year seperated by / character:”);

scanf(“%d/%d/%d”,&day,&month,&year);

printf(“your date of birth is : %d day %d month %d year”,day, month, year);

return 0;

}

3.2. Formatted I/O (Example)

Nipun Thapa - BIM2nd - Unit 3 - C programming 12

 Write a program to read marks of a student in a subject.
The input marks should be less than 100 (ie only two
digits).

#include<stdio.h>

Int main()

{

int mark;

printf(“enter your mark (<100):”);

scanf(“%2d”,&mark);
printf(“your entered marks: %d”, mark);

return 0;

}

3.2. Formatted I/O (Example)

Nipun Thapa - BIM2nd - Unit 3 - C programming 13

 Program to show full name

#include<stdio.h>
int main()
{
 char name[100];
 printf("Enter your full name:");
 scanf("%[^\n]",&name);
 printf("Your full name is %s",name);
 return 0;

 }

3.2. Unformatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 14

 These functions are the most basic form of input and
output and they do not allow to supply input or
display output in user desired format.

 getch(), getche(), getchar(), gets(), puts(),
putchar() etc. are examples of unformatted input
output functions.

 Unformatted input and output functions do not
contain format specifier in their syntax.

 They are used for storing data more compactly.

 They are used mainly for character and string data
types.

3.2. Unformatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 15

1. getch(), getche() and putch()
 The function getch() and getche() reads a single character
in the instant it is typed without waiting for the enter key to be hit.
 The difference between them is that getch() reads the
character typed without echoing it on the screen, while getche()
reads the character and echoes (displays) it onto the screen.

Syntax:
 character_variable = getch();
 character_variable = getvhe();
In both functions, the character typed is assigned to the char type
variable character_variable.
The function putch() prints a character onto the screen.

Syntax: putch(character_variable)

3.2. Unformatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 16

 Program to read two character from keyboard and display the character.

#include<stdio.h>

int main()

{

 char ch1,ch2;

 printf(“Enter 1st character”);

 ch1=getch();

 printf(“enter 2nd character”);

 ch2=getch();
printf(“\n1st character:”);
putch(ch1);
printf(“\n2nd character:”);
putch(ch2);
return 0;

}

3.2. Unformatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 17

2. getchar() & putchar() functions

 The getchar() function reads a character from the
terminal and returns it as an integer. This function
reads only single character at a time.

 The putchar() function displays the character passed
to it on the screen and returns the same character.
This function too displays only a single character at a
time.

 In case you want to display more than one characters,
use putchar() method in a loop.

3.2. Unformatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 18

getchar() & putchar() functions example

#include <stdio.h>

int main()

{

 int c;

 printf("Enter a character");

 c = getchar();

 putchar(c);

 return 0;

}

3.2. Unformatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 19

3. gets() & puts() functions

 The gets() function reads a line from stdin(standard
input) into the buffer pointed to by str pointer, until
either a terminating newline or EOF (end of file)
occurs.

 The puts() function writes the string str and a trailing
newline to stdout.

 str → This is the pointer to an array of chars where the
C string is stored. (Ignore if you are not able to
understand this now.)

3.2. Unformatted I/O

Nipun Thapa - BIM2nd - Unit 3 - C programming 20

gets() & puts() functions example

#include<stdio.h>

int main()

{

 char str[100];

 printf("Enter a string");

 gets(str);

 puts(str);

 return 0;

}

Difference between scanf() and gets()

Nipun Thapa - BIM2nd - Unit 3 - C programming 21

 The main difference between these two functions is
that scanf() stops reading characters when it
encounters a space, but gets() reads space as
character too.

 If you enter name as Study Tonight using scanf() it will
only read and store Study and will leave the part after
space. But gets() function will read it completely.

3.3. Conversion character

Nipun Thapa - BIM2nd - Unit 3 - C programming 22

 The Conversion character for printf() is similar to that of
scanf().

 The Conversion character depend upon the type of the
variable or constant to be displayed.

3.3. Conversion character

Nipun Thapa - BIM2nd - Unit 3 - C programming 23

Conversion Character Displays Argument (Variable’s Contents) As

%c Single character

%d Signed decimal integer (int)

%e Signed floating-point value in E notation

%f Signed floating-point value (float)

%g Signed value in %e or %f format, whichever is shorter

%i Signed decimal integer (int)

%o Unsigned octal (base 8) integer (int)

%s String of text

%u Unsigned decimal integer (int)

%x Unsigned hexadecimal (base 16) integer (int)

%% (percent character)

3.4. Escape Sequences

Nipun Thapa - BIM2nd - Unit 3 - C programming 24

Nipun Thapa - BIM2nd - Unit 3 - C programming 25

Finished

Unit 3

