
Er. Nipun Thapa

Unit 12: Additional Features of C

7/19/2022 1 Nipun Thapa/Unit 12

Enumeration (or enum) in C

7/19/2022 Nipun Thapa/Unit 12 2

 Enumeration (or enum) is a user defined data type in C.

 It is mainly used to assign names to integral constants, the
names make a program easy to read and maintain.

3

Enumeration (or enum) in C

7/19/2022 Nipun Thapa/Unit 12 3

 Variables of type enum can also be defined. They can
be defined in two ways:

// In both of the below cases, "day" is

// defined as the variable of type week.

enum week{Mon, Tue, Wed};

enum week day;

// Or

enum week{Mon, Tue, Wed}day;

Enumeration (or enum) in C

7/19/2022 Nipun Thapa/Unit 12 4

// An example program to demonstrate working of enum in C

#include<stdio.h>

 enum week{Mon, Tue, Wed, Thur, Fri, Sat, Sun};

 int main()

{

 enum week day;

 day = Wed;

 printf("%d",day);

 return 0;

}

Output
2

Enumeration (or enum) in C

7/19/2022 Nipun Thapa/Unit 12 5

// Another example program to demonstrate working of enum in C

#include<stdio.h>

 enum year{Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec};

int main()

{

 int i;

 for (i=Jan; i<=Dec; i++)

 printf("%d ", i);

 return 0;

}

Output:
0 1 2 3 4 5 6 7 8 9 10 11

Enumeration (or enum) in C

7/19/2022 Nipun Thapa/Unit 12 6

// An example program to demonstrate working of enum in C

#include<stdio.h>

 enum week{Mon = 1, Tue, Wed, Thur, Fri, Sat, Sun};

 int main()

{

 enum week day;

 day = Mon;

 printf("%d",day);

 return 0;

}

Output
1

Macros in C

7/19/2022 Nipun Thapa/Unit 12 7

 A macro is a piece of code in a program that is
replaced by the value of the macro.

 Macro is defined by #define directive.

 Whenever a macro name is encountered by the
compiler, it replaces the name with the definition of
the macro.

 Macro definitions need not be terminated by a semi-
colon(;).

Macros in C

7/19/2022 Nipun Thapa/Unit 12 8

// C program to illustrate macros

#include <stdio.h>
 // Macro definition
#define LIMIT 5

int main()
{
 // Print the value of macro defined
 printf("The value of LIMIT is %d“, LIMIT);
 return 0;
}

Output:
The value of LIMIT is 5

Macros in C

7/19/2022 Nipun Thapa/Unit 12 9

// C program to illustrate macros
#include <stdio.h>
#define AREA(l, b) (l * b)
int main()
{

 int l1 = 10, l2 = 5, area;
 area = AREA(l1, l2);
 printf("Area of rectangle is: %d",area);

 return 0;
}

Output
Area of rectangle is:50

Command line parameters

7/19/2022 Nipun Thapa/Unit 12 10

 The most important function of C is main() function.
 It is mostly defined with a return type of int and without

parameters :
 int main() { /* ... */ }

 We can also give command-line arguments in C .
 Command-line arguments are given after the name of the

program in command-line shell of Operating Systems.
 To pass command line arguments, we typically define main()

with two arguments :
 first argument is the number of command line arguments and
 second is list of command-line arguments.

 int main(int argc, char *argv[]) { /* ... */ }
 or
 int main(int argc, char **argv) { /* ... */ }

Command line parameters

7/19/2022 Nipun Thapa/Unit 12 11

 argc (ARGument Count) is int and stores number of
command-line arguments passed by the user including the
name of the program. So if we pass a value to a program,
value of argc would be 2 (one for argument and one for
program name)

 The value of argc should be non negative.

 argv(ARGument Vector) is array of character pointers
listing all the arguments.

 If argc is greater than zero,the array elements from argv[0]
to argv[argc-1] will contain pointers to strings.

 Argv[0] is the name of the program , After that till
argv[argc-1] every element is command -line arguments.

Properties of Command Line Arguments:

7/19/2022 Nipun Thapa/Unit 12 12

1. They are passed to main() function.

2. They are parameters/arguments supplied to the
program when it is invoked.

3. They are used to control program from outside instead
of hard coding those values inside the code.

4. argv[argc] is a NULL pointer.

5. argv[0] holds the name of the program.

6. argv[1] points to the first command line argument and
argv[n] points last argument.

Storage classes in C

7/19/2022 Nipun Thapa/Unit 12 13

 Storage Classes are used to describe the features of a
variable/function. These features basically include the scope, visibility
and life-time which help us to trace the existence of a particular
variable during the runtime of a program.

 C language uses 4 storage classes, namely:

Storage classes in C

7/19/2022 Nipun Thapa/Unit 12 14

auto:

 This is the default storage class for all the variables declared inside a
function or a block.

 Hence, the keyword auto is rarely used while writing programs in C
language.

 Auto variables can be only accessed within the block/function they
have been declared and not outside them (which defines their scope).

 Of course, these can be accessed within nested blocks within the
parent block/function in which the auto variable was declared.

 However, they can be accessed outside their scope as well using the
concept of pointers given here by pointing to the very exact memory
location where the variables reside.

 They are assigned a garbage value by default whenever they are
declared.

Storage classes in C

7/19/2022 Nipun Thapa/Unit 12 15

extern:

 Extern storage class simply tells us that the variable is defined
elsewhere and not within the same block where it is used.

 Basically, the value is assigned to it in a different block and this can be
overwritten/changed in a different block as well.

 So an extern variable is nothing but a global variable initialized with a
legal value where it is declared in order to be used elsewhere.

 It can be accessed within any function/block.

 Also, a normal global variable can be made extern as well by placing
the ‘extern’ keyword before its declaration/definition in any
function/block.

 This basically signifies that we are not initializing a new variable but
instead we are using/accessing the global variable only.

 The main purpose of using extern variables is that they can be
accessed between two different files which are part of a large
program.

Storage classes in C

7/19/2022 Nipun Thapa/Unit 12 16

static:
 This storage class is used to declare static variables which are

popularly used while writing programs in C language.
 Static variables have the property of preserving their value even

after they are out of their scope! Hence, static variables
preserve the value of their last use in their scope.

 So we can say that they are initialized only once and exist till the
termination of the program.

 Thus, no new memory is allocated because they are not re-
declared.

 Their scope is local to the function to which they were defined.
 Global static variables can be accessed anywhere in the

program.
 By default, they are assigned the value 0 by the compiler.

Storage classes in C

7/19/2022 Nipun Thapa/Unit 12 17

register:

 This storage class declares register variables that have the same
functionality as that of the auto variables.

 The only difference is that the compiler tries to store these variables in
the register of the microprocessor if a free registration is available.

 This makes the use of register variables to be much faster than that of
the variables stored in the memory during the runtime of the program.

 If a free registration is not available, these are then stored in the
memory only.

 Usually few variables which are to be accessed very frequently in a
program are declared with the register keyword which improves the
running time of the program.

 An important and interesting point to be noted here is that we cannot
obtain the address of a register variable using pointers.

Storage classes in C

7/19/2022 Nipun Thapa/Unit 12 18

 To specify the storage class for a variable, the
following syntax is to be followed:

Syntax:

 storage_class var_data_type var_name;

7/19/2022 Nipun Thapa/Unit 12 19

Finished

Unit 12

