
Er.Nipun Thapa

Unit 10: Data File Handling

1 Nipun Thapa / C- Programming (Unit 10)

File Handling in C

Nipun Thapa / C- Programming (Unit 10) 2

 In programming, we may require some specific input data to be
generated several numbers of times. Sometimes, it is not enough to
only display the data on the console.

 The data to be displayed may be very large, and only a limited amount
of data can be displayed on the console, and since the memory is
volatile, it is impossible to recover the programmatically generated
data again and again. However, if we need to do so, we may store it
onto the local file system which is volatile and can be accessed every
time. Here, comes the need of file handling in C.

File Handling in C

Nipun Thapa / C- Programming (Unit 10) 3

 File handling in C enables us to create, update, read, and delete the
files stored on the local file system through our C program. The
following operations can be performed on a file.

 Creation of the new file

 Opening an existing file

 Reading from the file

 Writing to the file

 Deleting the file

Different Types of Files in C

Nipun Thapa / C- Programming (Unit 10) 4

 When dealing with files, there are two types of files
you should know about:

 Text files

 Binary files

Different Types of Files in C

Nipun Thapa / C- Programming (Unit 10) 5

1. Text files

 Text files are the normal .txt files. You can easily
create text files using any simple text editors such as
Notepad.

 When you open those files, you'll see all the contents
within the file as plain text. You can easily edit or
delete the contents.

 They take minimum effort to maintain, are easily
readable, and provide the least security and takes
bigger storage space.

Different Types of Files in C

Nipun Thapa / C- Programming (Unit 10) 6

2. Binary files

 Binary files are mostly the .bin files in your computer.

 Instead of storing data in plain text, they store it in the
binary form (0's and 1's).

 They can hold a higher amount of data, are not
readable easily, and provides better security than text
files.

C File Handling Operations

Nipun Thapa / C- Programming (Unit 10) 7

 In C, you can perform four major operations on files,
either text or binary:

 Creating a new file

 Opening an existing file

 Closing a file

 Reading from and writing information to a file

C File Handling Operations

Nipun Thapa / C- Programming (Unit 10) 8

 Creation of a new file (fopen with attributes as “a” or
“a+” or “w” or “w++”)

 Opening an existing file (fopen)

 Reading from file (fscanf or fgets)

 Writing to a file (fprintf or fputs)

 Moving to a specific location in a file (fseek, rewind)

 Closing a file (fclose)

Functions in File Operations:

Nipun Thapa / C- Programming (Unit 10) 9

Functions for file handling

Nipun Thapa / C- Programming (Unit 10) 10

No. Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file

5 fgetc() reads a character from file

6 fclose() closes the file

7 fseek() sets the file pointer to given position

8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

11 rewind() sets the file pointer to the beginning of the file

Opening or creating file

Nipun Thapa / C- Programming (Unit 10) 11

 For opening a file, fopen function is used with the required access modes. Some
of the commonly used file access modes are mentioned below.

File opening modes in C:

 “r” – Searches file. If the file is opened successfully fopen() loads it into memory and
sets up a pointer which points to the first character in it. If the file cannot be opened
fopen() returns NULL.

 “w” – Searches file. If the file exists, its contents are overwritten. If the file doesn’t exist,
a new file is created. Returns NULL, if unable to open file.

 “a” – Searches file. If the file is opened successfully fopen() loads it into memory and
sets up a pointer that points to the last character in it. If the file doesn’t exist, a new file
is created. Returns NULL, if unable to open file.

 “r+” – Searches file. If is opened successfully fopen() loads it into memory and sets up a
pointer which points to the first character in it. Returns NULL, if unable to open the file.

 “w+” – Searches file. If the file exists, its contents are overwritten. If the file doesn’t exist
a new file is created. Returns NULL, if unable to open file.

 “a+” – Searches file. If the file is opened successfully fopen() loads it into memory and
sets up a pointer which points to the last character in it. If the file doesn’t exist, a new
file is created. Returns NULL, if unable to open file.

Opening or creating file

Nipun Thapa / C- Programming (Unit 10) 12

Syntax :

 FILE *fptr;

 ptr = fopen("fileopen","mode");

Example:

FILE *filePointer;

So, the file can be opened as

filePointer = fopen(“fileName.txt”, “w”)

LAB 9. QN1: Program to Open a File, Write in it, And Close the File

Nipun Thapa / C- Programming (Unit 10) 13

include <stdio.h>
include <string.h>
int main()
{

 FILE *filePointer ;
 filePointer = fopen(“ncc.c", "w") ;
 if (filePointer == NULL)
 {
 printf(“ncc.c file failed to open.") ;
 }
 else
 {
 printf("The file is now opened.\n") ;
 }
 fputs("We love ncc",filePointer);
 fclose(filePointer) ;
 return 0;
}

LAB 9. QN2 : Program to Open a File, Read from it, And Close the File

Nipun Thapa / C- Programming (Unit 10) 14

include <stdio.h>
include <string.h>

int main()
{
 FILE *filePointer ;
 char dataToBeRead[50];
 // in read mode using "r" attribute
 filePointer = fopen("oic.c", "r") ;
 if (filePointer == NULL)
 {
 printf("oic.c file failed to open.") ;
 }

else
 {
 printf("The file is now opened.\n") ;
 // Read the dataToBeRead from the file
 // using fgets() method
 while(fgets (dataToBeRead, 50, filePointer) != NULL)
 {
 // Print the dataToBeRead
 printf("%s" , dataToBeRead) ;
 }
 // Closing the file using fclose()
 }
 fclose(filePointer) ;

 return 0;
}

LAB 9. QN 3 : Read from a text file

Nipun Thapa / C- Programming (Unit 10) 15

#include <stdio.h>
#include <stdlib.h>
int main()
{
 int num;
 FILE *fptr;
 if ((fptr = fopen("oic.txt","r")) == NULL){
 printf("Error! opening file");
 // Program exits if the file pointer returns NULL.
 exit(1);
 }

 fscanf(fptr,"%d", &num);

 printf("Value of n=%d", num);
 fclose(fptr);

 return 0;
}

4. C program to read name and marks of n number of students and store them in a file.

Nipun Thapa / C- Programming (Unit 10) 16

#include <stdio.h>

int main()

{

 char name[50];

 int marks, i, num;

 printf("Enter number of students: ");

 scanf("%d", &num);

 FILE *fptr;

 fptr = (fopen("D:\\student.txt", "w"));

 if(fptr == NULL)

 {

 printf("Error!");

 exit(1);

 }

 for(i = 0; i < num; ++i)
 {
 printf("For student%d\nEnter name: ", i+1);
 scanf("%s", name);

 printf("Enter marks: ");
 scanf("%d", &marks);

 fprintf(fptr,"\nName: %s \nMarks=%d \n", name, marks);
 }

 fclose(fptr);
 return 0;
}

5. C program to read name and marks of n number of students from and store them in a file. If the file
previously exits, add the information to the file.

Nipun Thapa / C- Programming (Unit 10) 17

#include <stdio.h>

int main()

{

 char name[50];

 int marks, i, num;

 printf("Enter number of students: ");

 scanf("%d", &num);

 FILE *fptr;

 fptr = (fopen("D:\\student.txt", “a"));

 if(fptr == NULL)

 {

 printf("Error!");

 exit(1);

 }

 for(i = 0; i < num; ++i)
 {
 printf("For student%d\nEnter name: ", i+1);
 scanf("%s", name);

 printf("Enter marks: ");
 scanf("%d", &marks);

 fprintf(fptr,"\nName: %s \nMarks=%d \n", name, marks);
 }

 fclose(fptr);
 return 0;
}

6. C program to write all the members of an array of structures to a file using
fwrite(). Read the array from the file and display on the screen.

Nipun Thapa / C- Programming (Unit 10) 18

#include <stdio.h>

struct student

{

 char name[50];

 int height;

};

int main(){

 struct student stud1[5], stud2[5];

 FILE *fptr;

 int i;

 fptr = fopen("D:\\file.txt","wb");

 for(i = 0; i < 5; ++i)

 {

 fflush(stdin);

 printf("Enter name: ");

 gets(stud1[i].name);

 printf("Enter height: ");
 scanf("%d", &stud1[i].height);
 }

 fwrite(stud1, sizeof(stud1), 1, fptr);
 fclose(fptr);

 fptr = fopen("D:\\file.txt", "rb");
 fread(stud2, sizeof(stud2), 1, fptr);
 for(i = 0; i < 5; ++i)
 {
 printf("Name: %s\nHeight: %d", stud2[i].name,
stud2[i].height);
 }
 fclose(fptr);
}

C Source Code: Reading File Contents

Nipun Thapa / C- Programming (Unit 10) 19

#include<stdio.h>

#include<stdlib.h>

int main()

{

 FILE *fptr;

 char ch;

 /* Opening file in read mode */

 fptr = fopen("D:\\student.txt","r");

 if(fptr==NULL)

 {

 printf("Can't open file. Make sure file exits.\n");

 exit(1);

 }

 do
 {
 ch = fgetc(fptr);
 putchar(ch);

 }while(ch!=EOF);
 fclose(fptr);

 return 0;
}

End-Of-File (EOF)

Nipun Thapa / C- Programming (Unit 10) 20

 EOF is special character that indicates the the end of
file has been reached.

 This character can be generated from the keyboard by
typing ctrl+z;

 When we are creating a file, the special character EOF
, is inserted after the last character of the file by the
OS.

 Thus, the last point of file is detected using EOF while
reading data from file.

 It’s necessity arises from the fact that we may not
know in advance up to where we have data

Read file using End-Of-File (EOF) Example

Nipun Thapa / C- Programming (Unit 10) 21

#include<stdio.h>
void main()
{

FILE *fp ;
char ch ;
fp = fopen("D:\\student.txt","r") ;
while (1)
{

ch = fgetc (fp) ;
if (ch == EOF)
break ;
printf("%c",ch) ;

}
fclose (fp) ;

}

Nipun Thapa / C- Programming (Unit 10) 22

Nipun Thapa / C- Programming (Unit 10) 23

Nipun Thapa / C- Programming (Unit 10) 24

Nipun Thapa / C- Programming (Unit 10) 25

Nipun Thapa / C- Programming (Unit 10) 26

Nipun Thapa / C- Programming (Unit 10) 27

Nipun Thapa / C- Programming (Unit 10) 28

Finished Unit 10

