
Er.	Nipun	Thapa

Unit 1 : Introduction to C Programming

1 Nipun	Thapa/BIM_C/Unit	1 3/29/22

1.1. Introduction and History
� C is a programming language developed at AT & T’s Bell Laboratories of
USA in 1972. It was designed and written by a man named Dennis Ritchie.

� In the late seventies C began to replace the more familiar languages of that
time like PL/I, ALGOL, etc

� It was initially designed for programming UNIX operating system. Now the
software tool as well as the C compiler is written in C. Major parts of
popular operating systems like Windows, UNIX, Linux is still written in C.

� This is because even today when it comes to performance (speed of
execution) nothing beats C.

� Moreover, if one is to extend the operating system to work with new
devices one needs to write device driver programs. These programs are
exclusively written in C.

� C seems so popular is because it is reliable, simple and easy to use. Often
heard today is – “C has been already superceded by languages like C++, C#
and Java.

2 Nipun	Thapa/BIM_C/Unit	1 3/29/22

1.1. Introduction to Programming
Language

Nipun	Thapa/BIM_C/Unit	13

Fig. 1.1. Steps in C program

3/29/22

1.1. Introduction to Programming
Language

Nipun	Thapa/BIM_C/Unit	14

� Learning C is similar and easier.
� Instead of straight-away learning how to write programs, we
must first know what alphabets, numbers and special
symbols are used in C, then how using them constants,
variables and keywords are constructed, and finally how
are these combined to form an instruction.

� A group of instructions would be combined later on to form a
program.

� So a computer program is just a collection of the instructions
necessary to solve a specific problem.

� The basic operations of a computer system form what is
known as the computer’s instruction set. And the approach
or method that is used to solve the problem is known as an
algorithm.

3/29/22

1.2. Types of Programming Language

Nipun	Thapa/BIM_C/Unit	15

Programming	Languages

Low	Level	Language High	Level	Language

Procedure	Oriented	
Language

Problem	Oriented	Language

Natural	Language

Assembly	
Language

Machine	
Language

3/29/22

1.2. Types of Programming Language

Nipun	Thapa/BIM_C/Unit	16

So for as programming language concern these are
of two types.

� Low	level	language
� High	level	language

3/29/22

1.2. Types of Programming Language

Nipun	Thapa/BIM_C/Unit	17

1.	Low	level	language:
� Low level languages are machine level and assembly level
language.

� In machine level language computer only understand digital
numbers i.e. in the form of 0 and 1. So, instruction given to
the computer is in the form binary digit, which is difficult to
implement instruction in binary code.

� This type of program is not portable, difficult to maintain and
also error prone. The assembly language is on other hand
modified version of machine level language.

� Where instructions are given in English like word as ADD,
SUM, MOV etc. It is easy to write and understand but not
understand by the machine. So the translator used here is
assembler to translate into machine level.

3/29/22

1.2. Types of Programming Language

Nipun	Thapa/BIM_C/Unit	18

2.	High	level	language:
� These languages are machine independent, means
it is portable. The language in this category is
Pascal, Cobol, Fortran etc.

� High level languages are understood by the
machine. So it need to translate by the translator
into machine level.

� A translator is software which is used to translate
high level language as well as low level language in
to machine level language.

3/29/22

1.3. Language Processor

Nipun	Thapa/BIM_C/Unit	19

Three	types	of	translator	are	there:
� Compiler
� Interpreter
� Assembler

3/29/22

1.3. Language Processor

Nipun	Thapa/BIM_C/Unit	110

1.	Compiler
� The language processor that reads the complete source program written in
high level language as a whole in one go and translates it into an equivalent
program in machine language is called as a Compiler.

� Example: C, C++, C#, JavaIn a compiler, the source code is translated to
object code successfully if it is free of errors. The compiler specifies the
errors at the end of compilation with line numbers when there are any
errors in the source code. The errors must be removed before the compiler
can successfully recompile the source code again.

3/29/22

1.3. Language Processor

Nipun	Thapa/BIM_C/Unit	111

2.	Assembler	
� The Assembler is used to translate the program written
in Assembly language into machine code.

� The source program is a input of assembler that
contains assembly language instructions.

� The output generated by assembler is the object code or
machine code understandable by the computer.

3/29/22

1.3. Language Processor

Nipun	Thapa/BIM_C/Unit	112

3. Interpreter
� The translation of single statement of source program into machine
code is done by language processor and executes it immediately
before moving on to the next line is called an interpreter.

� If there is an error in the statement, the interpreter terminates its
translating process at that statement and displays an error
message.

� The interpreter moves on to the next line for execution only after
removal of the error.

� An Interpreter directly executes instructions written in a
programming or scripting language without previously converting
them to an object code or machine code.
Example: Perl, Python and Matlab.

3/29/22

1.3. Language Processor

Nipun	Thapa/BIM_C/Unit	113

COMPILER INTERPRETER

1. A compiler is a program which coverts
the entire source code of a programming
language into executable machine code
for a CPU.

1. interpreter takes a source program and
runs it line by line, translating each line
as it comes to it.

2. Compiler takes large amount of time to
analyze the entire source code but the
overall execution time of the program is
comparatively faster.

2. Interpreter takes less amount of time to
analyze the source code but the overall
execution time of the program is slower.

3. Compiler generates the error message only
after scanning the whole program, so
debugging is comparatively hard as the
error can be present any where in the
program.

3. Its Debugging is easier as it continues
translating the program until the error is
met

4. Generates intermediate object code. 4. No intermediate object code is generated.

5. Examples: C, C++, Java 5. Examples: Python, Perl

3/29/22

1.4. Program Errors

Nipun	Thapa/BIM_C/Unit	114

� Error is an illegal operation performed by the user which results in
abnormal working of the program.

� Programming errors often remain undetected until the program is
compiled or executed.

� Some of the errors inhibit the program from getting compiled or executed.
Thus errors should be removed before compiling and executing.

� The most common errors can be broadly classified as follows.

3/29/22

1.4. Program Errors

Nipun	Thapa/BIM_C/Unit	115

1.	Syntax	errors:
� Errors that occur when you violate the rules of writing C/C++ syntax are
known as syntax errors. This compiler error indicates something that must
be fixed before the code can be compiled. All these errors are detected by
compiler and thus are known as compile-time errors. Most frequent syntax
errors are:

� Missing	Parenthesis	(})
� Printing	the	value	of	variable	without	declaring	it
� Missing	semicolon	like	this://	C	program	to	illustrate	

//	syntax	error	
#include<stdio.h>	
int main()	
{	
int x	=	10;	
int y	=	15;
printf("%d",	(x,	y))	//	semicolon	missed	
retutn 0;

}		Error: 3/29/22

1.4. Program Errors

Nipun	Thapa/BIM_C/Unit	116

2. Run-time Errors :
� Errors which occur during program execution(run-time) after
successful compilation are called run-time errors. One of the most
common run-time error is division by zero also known as Division
error. These types of error are hard to find as the compiler doesn’t
point to the line at which the error occurs. For more understanding
run the example given below.

#include<stdio.h>	
int main()	
{	
int n	=	9,	div	=	0;	
//	wrong	logic	
//	number	is	divided	by	0,	
//	so	this	program	abnormally	terminates	
div	=	n/0;	
printf("resut =	%d",	div);	
return	0;

}	 3/29/22

1.4. Program Errors

Nipun	Thapa/BIM_C/Unit	117

3.	Logical	Errors	:
� On compilation and execution
of a program, desired output is
not obtained when certain
input values are given. These
types of errors which provide
incorrect output but appears to
be error free are called logical
errors. These are one of the
most common errors done by
beginners of programming.
These errors solely depend on
the logical thinking of the
programmer and are easy to
detect if we follow the line of
execution and determine why
the program takes that path of
execution.

//	C	program	to	illustrate	
//	logical	error	
int main()	
{	
int i =	0;	
//	logical	error	:	a	semicolon	after	

loop	
for(i =	0;	i <	3;	i++);	
{	
printf("loop	");	
continue;	

}
getchar();	
return	0;	

}	

3/29/22

1.5. Features of good Program

Nipun	Thapa/BIM_C/Unit	118

� Every computer requires appropriate instruction set
(programs) to perform the required task.

� The quality of the processing depends upon the given
instructions.

� If the instructions are improper or incorrect, then it is
obvious that the result will be superfluous.

� Therefore, proper and correct instructions should be
provided to the computer so that it can provide the
desired output.

� Hence, a program should be developed in such a way
that it ensures proper functionality of the computer. In
addition, a program should be written in such a manner
that it is easier to understand the underlying logic.

3/29/22

1.5. Features of good Program

Nipun	Thapa/BIM_C/Unit	119

� A	good	computer	program	should	have	following	
characteristics:
1. Portability
2. Readability
3. Efficiency
4. Structural
5. Flexibility
6. Generality
7. Documentation

3/29/22

1.5. Features of good Program

Nipun	Thapa/BIM_C/Unit	120

1.	Portability:	
� Portability refers to the ability of an application to run
on different platforms (operating systems) with or
without minimal changes.

� Due to rapid development in the hardware and the
software, nowadays platform change is a common
phenomenon.

� Hence, if a program is developed for a particular
platform, then the life span of the program is severely
affected.

3/29/22

1.5. Features of good Program

Nipun	Thapa/BIM_C/Unit	121

2. Readability:
� The program should be written in such a way that it
makes other programmers or users to follow the logic of
the program without much effort.

� If a program is written structurally, it helps the
programmers to understand their own program in a
better way.

� Even if some computational efficiency needs to be
sacrificed for better readability, it is advisable to use a
more user-friendly approach, unless the processing of
an application is of utmost importance.

3/29/22

1.5. Features of good Program

Nipun	Thapa/BIM_C/Unit	122

3. Efficiency:
� Every program requires certain processing time and
memory to process the instructions and data.

� As the processing power and memory are the most
precious resources of a computer, a program should be
laid out in such a manner that it utilizes the least
amount of memory and processing time.

3/29/22

1.5. Features of good Program

Nipun	Thapa/BIM_C/Unit	123

4.	Structural:	
� To develop a program, the task must be broken down
into a number of subtasks.

� These subtasks are developed independently, and each
subtask is able to perform the assigned job without the
help of any other subtask.

� If a program is developed structurally, it becomes more
readable, and the testing and documentation process
also gets easier.

3/29/22

1.5. Features of good Program

Nipun	Thapa/BIM_C/Unit	124

5.	Flexibility:	
� A program should be flexible enough to handle most of
the changes without having to rewrite the entire
program.

� Most of the programs are developed for a certain period
and they require modifications from time to time.

� For example, in case of payroll management, as the time
progresses, some employees may leave the company
while some others may join.

� Hence, the payroll application should be flexible enough
to incorporate all the changes without having to
reconstruct the entire application.

3/29/22

1.5. Features of good Program

Nipun	Thapa/BIM_C/Unit	125

6.	Generality:	
� Apart from flexibility, the program should also be
general. Generality means that if a program is developed
for a particular task, then it should also be used for all
similar tasks of the same domain.

� For example, if a program is developed for a particular
organization, then it should suit all the other similar
organizations.

3/29/22

1.5. Features of good Program

Nipun	Thapa/BIM_C/Unit	126

7.	Documentation:	
� Documentation is one of the most important
components of an application development.

� Even if a program is developed following the best
programming practices, it will be rendered useless if the
end user is not able to fully utilize the functionality of
the application.

� A well-documented application is also useful for other
programmers because even in the absence of the author,
they can understand it.

3/29/22

1.6. Introduction to Program Technique
� C is a general-purpose, procedural, imperative computer
programming language developed in 1972 by Dennis M. Ritchie at
the Bell Telephone Laboratories to develop the UNIX operating
system.

� C is the most widely used computer language.
� It keeps fluctuating at number one scale of popularity along with
Java programming language, which is also equally popular and
most widely used among modern software programmers.

27 Nipun	Thapa-BCA-C-Unit	2

1.6. Top down and Bottom up Approach

Nipun	Thapa-BCA-C-Unit	228

Top down Approach
� The basic task of a top-down approach is to divide the
problem into tasks and then divide tasks into smaller
sub-tasks and so on.

� Each part of it then refined into more details, defining it
in yet more details until the entire specification is
detailed enough to validate the model.

� It break the problem into parts, Then break the parts
into parts soon and now each of part will be easy to do.

1.6. Top down and Bottom up Approach

Nipun	Thapa-BCA-C-Unit	229

Top	down	Approach
� C programming language supports this approach for
developing projects.

� It is always good idea that decomposing solution into
modules in a hierarchal manner.

� In this approach, first we develop the main module and
then the next level modules are developed.

� This procedure is continued until all the modules are
developed.

1.6. Top down and Bottom up Approach

Nipun	Thapa-BCA-C-Unit	230

Top	down	Approach
Program

X Y Z

X1 X2 X3 Y1 Y2 Z1 Z2

1.6. Top down and Bottom up Approach

Nipun	Thapa-BCA-C-Unit	231

Top down Approach
Advantages:
� Breaking problems into parts help us to identify what needs to be
done.

� At each step of refinement new parts will become less complex and
therefore easier to solve.

� Parts of solution may turn out to be reusable.
� Breaking problems into parts allows more than one person to solve
the problem.

1.6. Top down and Bottom up Approach

Nipun	Thapa-BCA-C-Unit	232

Bottom-Up	Design	Model:
� In this design, individual parts of the system are specified in details.
� The parts are the linked to form larger components, which are in
turn linked until a complete system is formed.

� This approach is exactly opposite to the top-down approach.
� In this approach, bottom level modules developed first (Lower level
module developed, tested and debugged).

� Then the next module developed, tested and debugged.
� This process is continued until all modules have been completed.
� This approach is good for reusability of code.
� Object oriented language such as C++ or java uses bottom up
approach where each object is identified first.

1.6. Top down and Bottom up Approach

Nipun	Thapa-BCA-C-Unit	233

Program

X Y Z

X1 X2 X3 Y1 Y2 Z1 Z2

Bottom-Up	Design	Model:

1.6. Top down and Bottom up Approach

Nipun	Thapa-BCA-C-Unit	234

Bottom-Up	Design	Model:
Advantage:
� Make decisions about reusable low level utilities then decide how
there will be put together to create high level construct.

� Contrast	between	Top	down	design	and	bottom	up	design.

S.NO. TOP	DOWN	APPROACH BOTTOM	UP	APPROACH

1. In	this	approach	We	focus	on	breaking	up	the	
problem	into	smaller	parts.

In	bottom	up	approach,	we	solve	smaller	
problems	and	integrate	it	as	whole	and	
complete	the	solution.

2. Mainly	used	by	structured	programming	
language	such	as	COBOL,	Fortan,	C	etc.

Mainly	used	by	object	oriented	programming	
language	such	as	C++,	C#,	Python.

3. Each	part	is	programmed	separately	
therefore	contain	redundancy.

Redundancy	is	minimized	by	using	data	
encapsulation	and	data	hiding.

4. In	this	the	communications	is	less	among	
modules. In	this	module	must	have	communication.

5. It	is	used	in	debugging,	module	
documentation,	etc. It	is	basically	used	in	testing.

6. In	top	down	approach,	decomposition	takes	
place.

In	bottom	up	approach	composition	takes	
place.

7. In	this	top	function	of	system	might	be	hard	
to	identify.

In	this	sometimes	we	can	not	build	a	
program	from	the	piece	we	have	started.

8. In	this	implementation	details	may	differ. This	is	not	natural	for	people	to	assemble.

1.6. Top down and Bottom up Approach

Nipun	Thapa-BCA-C-Unit	235

Nipun	Thapa-BCA-C-Unit	236

A C program is divided into different sections.
There are six main sections to a basic c program.
The	six	sections	are,

� Documentation
� Link
� Definition
� Global	Declarations
� Main	functions
� Subprograms

1.7.Strucuted Programming

Nipun	Thapa-BCA-C-Unit	237

Figure: Basic	Structure	Of	C	Program

1.7.Strucuted Programming

Nipun	Thapa-BCA-C-Unit	238

1. Documentation Section
� The documentation section is the part of the program where the
programmer gives the details associated with the program.

� It usually gives the name of the program, the details of the author and
other details like the time of coding and description. It gives anyone
reading the code the overview of the code.

Example
/**
*	File	Name:	Helloworld.c
*	Author:	Manthan Naik
*	date:	09/08/2019
*	description:	a	program	to	display	hello	world
* no	input	needed
*/
Moving	on	to	the	next	bit	of	this	basic	structure	of	a	C	program	article,

1.7.Strucuted Programming

Nipun	Thapa-BCA-C-Unit	239

2. Link Section
� This part of the code is used to declare all the header
files that will be used in the program.

� This leads to the compiler being told to link the header
files to the system libraries.

Example
#include<stdio.h>

Moving on to the next bit of this basic structure of a C
program article,

1.7.Strucuted Programming

Nipun	Thapa-BCA-C-Unit	240

3.	Definition	Section
� In	this	section,	we	define	different	constants.	The	
keyword	define	is	used	in	this	part.

Example
#define	PI=3.14

Moving	on	to	the	next	bit	of	this	basic	structure	of	a	C	
program	article,

1.7.Strucuted Programming

Nipun	Thapa-BCA-C-Unit	241

4.	Global	Declaration	Section
� This part of the code is the part where the global variables are
declared.

� All the global variable used are declared in this part.
� The user-defined functions are also declared in this part of the
code.

Example
float	area(float	r);
int a=7;

Moving	on	to	the	next	bit	of	this	basic	structure	of	a	C	program	article,

1.7.Strucuted Programming

Nipun	Thapa-BCA-C-Unit	242

5. Main Function Section
� Every C-programs needs to have the main function. Each main function
contains 2 parts. A declaration part and an Execution part. The declaration
part is the part where all the variables are declared. The execution part
begins with the curly brackets and ends with the curly close bracket. Both
the declaration and execution part are inside the curly braces.

Example
int main(void)
{

int a=10;
printf(" %d", a);
return 0;

}
Moving on to the next bit of this basic structure of a C program article,

1.7.Strucuted Programming

Nipun	Thapa-BCA-C-Unit	243

6.	Sub	Program	Section
� All the user-defined functions are defined in this
section of the program.

Example
int add(int a,	int b)
{
return	a+b;

}

1.7.Strucuted Programming

Nipun	Thapa-BCA-C-Unit	244

1.7.Strucuted Programming

1.7.Strucuted Programming

Nipun	Thapa-BCA-C-Unit	245

Features	of	structured	programming
� The structured program consists of well structured and separated
modules.

� But the entry and exit in a Structured program is a single-time
event.

� It means that the program uses single-entry and single-exit
elements.

� Therefore a structured program is well maintained, neat and clean
program.

� This is the reason why the Structured Programming Approach is
well accepted in the programming world.

1.7.Strucuted Programming

Nipun	Thapa-BCA-C-Unit	246

Advantages	of	Structured	Programming	
Approach:

� Easier	to	read	and	understand
� User	Friendly
� Easier	to	Maintain
� Mainly	problem	based	instead	of	being	machine	based
� Development	is	easier	as	it	requires	less	effort	and	time
� Easier	to	Debug
� Machine-Independent,	mostly.

1.7.Strucuted Programming

Nipun	Thapa-BCA-C-Unit	247

Disadvantages	of	Structured	Programming	
Approach:

� Since it is Machine-Independent, So it takes time to convert
into machine code.

� The converted machine code is not the same as for assembly
language.

� The program depends upon changeable factors like data-
types. Therefore it needs to be updated with the need on the
go.

� Usually the development in this approach takes longer time
as it is language-dependent. Whereas in the case of assembly
language, the development takes lesser time as it is fixed for
the machine.

1.8. Program Design

Nipun	Thapa/BIM_C/Unit	148

The	next	stage	is	the	program	design.	The	
software	developer	makes	use	of	tools	like	algorithms	
and	flowcharts	to	develop	the	design	of	the	program.

� Algorithm
� Flowchart

3/29/22

1.8. Program Design

Nipun	Thapa/BIM_C/Unit	149

1. Definition	of	Algorithm
� To write a logical step-by-step method to solve the problem is
called the algorithm; in other words, an algorithm is a
procedure for solving problems. In order to solve a
mathematical or computer problem, this is the first step in
the process. An algorithm includes calculations, reasoning,
and data processing. Algorithms can be presented by natural
languages, pseudocode, and flowcharts, etc.

2. Definition	of	Flowchart
� A flowchart is the graphical or pictorial representation of an
algorithm with the help of different symbols, shapes, and
arrows to demonstrate a process or a program. With
algorithms, we can easily understand a program. The main
purpose of using a flowchart is to analyze different methods.
Several standard symbols are applied in a flowchart:

3/29/22

1.8. Program Design

Nipun	Thapa/BIM_C/Unit	150

Definition	of	Flowchart

Start	and	stop

Flow	or	connection

Input	or	output

process

condition

3/29/22

1.8. Program Design

Nipun	Thapa/BIM_C/Unit	151

Example	1:	Convert	Temperature	from	Fahrenheit	(0F)	to	Celsius	(0C)

Flowchart:
Algorithm:
� Step	1:	Start	
� Step	2:	Read	temperature	in	Fahrenheit,
� Step	3:	Calculate	temperature	with	formula	C=5/9*(F-32),
� Step	4:	Print	C
� Step	5	:	End

3/29/22

1.8. Program Design

Nipun	Thapa/BIM_C/Unit	152

Example	2:	Determine	Whether	A	Student	Passed	the	Exam	or	Not:

Algorithm:
� Step 1: Start
� Step 2: Input grades of 4 courses M1, M2, M3 and M4,
� Step 3: Calculate the average grade with formula
"Grade=(M1+M2+M3+M4)/4"

� Step 4: If the average grade is less than 60, print "FAIL", else print
"PASS".

� Step 5: End

3/29/22

Con….
Flowchart:

Nipun	Thapa/BIM_C/Unit	153 3/29/22

1.8. Program Design

Nipun	Thapa/BIM_C/Unit	154

Example	3:	Print	1	to	20 Flowchart:

Algorithm:
� Step	1:	Start
� Step	2:	Initialize	X	as	0,
� Step	3:	Increment	X	by	1,
� Step	4:	Print	X,
� Step	5:	If	X	is	less	than	20	then	go	back	to	step	2.
� Step	6:	End

3/29/22

1.8. Program Design

Nipun	Thapa/BIM_C/Unit	155

Example	4:	Calculate	the	Interest	of	a	Bank	Deposit

Flowchart:
Algorithm:
� Start	1:	Start
� Step	2:	Read	amount,
� Step	3:	Read	years,
� Step	4:	Read	rate,
� Step	5:	Calculate	the	interest	with	the	formula	
"Interest=Amount*Years*Rate/100

� Step	6:	Print	interest,
� Step	7:	End

3/29/22

1.8. Program Design

Nipun	Thapa/BIM_C/Unit	156

Example	5:	Determine	and	Output	Whether	Number	N	is	Even	or	Odd

Flowchart:
Algorithm:
� Step	1:	Start
� Step	2:	Read	number	N,
� Step	3:	Set	remainder	as	N	modulo	2,
� Step	4:	If	the	remainder	is	equal	to	0	then	number	
N	is	even,	else	number	N	is	odd,

� Step	5:	Print	output.
� Step	6:	End

3/29/22

1.8. Program Design

Nipun	Thapa/BIM_C/Unit	157

Example 6: Determine Whether a Temperature is Below or Above the
Freezing Point

Algorithm:
� Step 1:Start
� Step 2: Input temperature,
� Step	3:	If	it	is	less	than	32,	then	print	"below	freezing	point",	
otherwise	print	"above	freezing	point".

� Step	4:	End

3/29/22

Nipun	Thapa/BIM_C/Unit	158

Flowchart:

3/29/22

1.8. Program Design

Nipun	Thapa/BIM_C/Unit	159

Example	7:	Determine	Whether	A	Student	Passed	the	Exam	or	Not:

Flowchart:
Algorithm:
� Step	1:Start
� Step	2:	Input	grades	of	4	courses	M1,	M2,	M3	and	
M4,

� Step	3:	Calculate	the	average	grade	with	the	
formula	"Grade=(M1+M2+M3+M4)/4"

� Step	4:	If	the	average	grade	is	less	than	60,	print	
"FAIL",	else	print	"PASS".

� Step	5:	End

3/29/22

1.8. Program Design(Pseudo Code)

3/29/22Nipun	Thapa/BIM_C/Unit	160

Pseudo Code in C
� Pseudo code in C is a simple way to write programming
code in English.

� Pseudo-code is informal writing style for program
algorithm independent from programming languages to
show the basic concept behind the code.

� Pseudocode is not an actual programming language. So
it cannot be compiled and not be converted into an
executable program.

� It uses short or simple English language syntax to write
code for programs before it is converted into a specific
programming language.

1.8. Program Design(Pseudo Code)

3/29/22Nipun	Thapa/BIM_C/Unit	161

Pseudocode is also known as Program Design
Language (PDL) or Structured has the following characteristics:

� A free syntax of natural language that describes a processing
feature.

� A subprogram definition and calling techniques.
� Fixed syntax of keywords that provide for all structured
constructs, data declarations and modularity characteristics.

� A data declaration facility.

Pseudocode is a set of sequential written human
language instructions, usually numbered, that is used to
describe the actions a program will take when it is coded in a
programming language.

3/29/22Nipun	Thapa/BIM_C/Unit	162

1.9. Debugging

Nipun	Thapa/BIM_C/Unit	163

� At this stage the errors in the programs are detected
and corrected.

� This stage of program development is an important
process. Debugging is also known as program
validation.

� Some common errors which might occur in the
programs include:
� Un initialization of variables.
� Reversing of order of operands.
� Confusion of numbers and characters.
� Inverting of conditions eg jumping on zero instead of on
not zero.

3/29/22

Nipun	Thapa/BIM_C/Unit	164

Finished

Unit	1
3/29/22

